1887

Abstract

A novel bacterial strain, EJ-4, isolated from stream water collected at Seo-ho in Suwon, Republic of Korea, was characterized based on a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain EJ-4 belonged to the genus . The isolate is Gram-stain-negative, non-motile, aerobic, rod-shaped and forms pale yellow colonies on trypticase soy agar. The optimal growth of this strain was observed aerobically at 30 °C, pH 7 and 0.5 % NaCl. The major fatty acids were summed feature 3 (C 7 and/or C 6; 39.7 %) and C (32.0 %). The G+C content of strain EJ-4 was 58.4mol %. The average nucleotide identity and digital DNA–DNA hybridization values between strain EJ-4 and were 91.8 and 31.2 %, respectively. The major polar lipids detected in the isolate were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant isoprenoid quinone was ubiquinone-8. Based on the results of polyphasic taxonomic analysis of strain EJ-4, we describe a novel species of the genus , for which the name sp. nov. has been proposed, with EJ-4 (=KCTC 82074=JCM 34179=KEMB 1602-279) as the type strain.

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award NRF-2018R1C1B6007755)
    • Principle Award Recipient: Kyu-HyunPark
  • Ministry of Land, Infrastructure and Transport of Korean government (Award 20SCIP-C158976-01)
    • Principle Award Recipient: Kyu-HyunPark
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004681
2021-04-13
2021-05-15
Loading full text...

Full text loading...

References

  1. Davis GH, Park RW. A taxonomic study of certain bacteria currently classified as Vibrio species. J Gen Microbiol 1962; 27:101–119 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  3. Wauters G, De Baere T, Willems A, Falsen E, Vaneechoutte M. Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena . Int J Syst Evol Microbiol 2003; 53:859–862 [CrossRef][PubMed]
    [Google Scholar]
  4. Kämpfer P, Busse H-J, Baars S, Wilharm G, Glaeser SP. Comamonas aquatilis sp. nov., isolated from a garden pond. Int J Syst Evol Microbiol 2018; 68:1210–1214 [CrossRef][PubMed]
    [Google Scholar]
  5. Tago Y, Yokota A. Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J Gen Appl Microbiol 2004; 50:243–248 [CrossRef][PubMed]
    [Google Scholar]
  6. Young C-C, Chou J-H, Arun AB, Yen W-S, Sheu S-Y et al. Comamonas composti sp. nov., isolated from food waste compost. Int J Syst Evol Microbiol 2008; 58:251–256 [CrossRef][PubMed]
    [Google Scholar]
  7. Gumaelius L, Magnusson G, Pettersson B, Dalhammar G. Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2001; 51:999–1006 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim D-H, Han K-I, Kwon H-J, Kim M-G, Kim Y-G et al. Comamonas flocculans sp. nov., a floc-forming bacterium isolated from livestock wastewater. Curr Microbiol 2020; 77:1902–1908 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim K-H, Ten LN, Liu Q-M, Im W-T, Lee S-T. Comamonas granuli sp. nov., isolated from granules used in a wastewater treatment plant. J Microbiol 2008; 46:390–395 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang J, Wang Y, Zhou S, Wu C, He J et al. Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas . Int J Syst Evol Microbiol 2013; 63:809–814 [CrossRef][PubMed]
    [Google Scholar]
  11. Hatayama K. Comamonas humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:3976–3982 [CrossRef][PubMed]
    [Google Scholar]
  12. Sun L-N, Zhang J, Chen Q, He J, Li Q-F et al. Comamonas jiangduensis sp. nov., a biosurfactant-producing bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2013; 63:2168–2173 [CrossRef][PubMed]
    [Google Scholar]
  13. Chang Y-H, Han J-il, Chun J, Lee KC, Rhee M-S et al. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 2002; 52:377–381 [CrossRef][PubMed]
    [Google Scholar]
  14. Etchebehere C, Errazquin MI, Dabert P, Moletta R, Muxí L. Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int J Syst Evol Microbiol 2001; 51:977–983 [CrossRef][PubMed]
    [Google Scholar]
  15. Chou J-H, Sheu S-Y, Lin K-Y, Chen W-M, Arun AB et al. Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus . Int J Syst Evol Microbiol 2007; 57:887–891 [CrossRef][PubMed]
    [Google Scholar]
  16. Xie F, Ma H, Quan S, Liu D, Chen G. Comamonas phosphati sp. nov., isolated from a phosphate mine. Int J Syst Evol Microbiol 2016; 66:456–461 [CrossRef][PubMed]
    [Google Scholar]
  17. Kang W, Soo Kim P, Hyun D-W, Lee J-Y, Sik Kim H et al. Comamonas piscis sp. nov., isolated from the intestine of a Korean rockfish, Sebastes schlegelii . Int J Syst Evol Microbiol 2016; 66:780–785 [CrossRef][PubMed]
    [Google Scholar]
  18. Subhash Y, Bang JJ, You TH, Lee S-S. Description of Comamonas sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:2735–2739 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhu D, Xie C, Huang Y, Sun J, Zhang W. Description of Comamonas serinivorans sp. nov., isolated from wheat straw compost. Int J Syst Evol Microbiol 2014; 64:4141–4146 [CrossRef][PubMed]
    [Google Scholar]
  20. Chipirom K, Tanasupawat S, Akaracharanya A, Leepepatpiboon N, Prange A et al. Comamonas terrae sp. nov., an arsenite-oxidizing bacterium isolated from agricultural soil in Thailand. J Gen Appl Microbiol 2012; 58:245–251 [CrossRef][PubMed]
    [Google Scholar]
  21. De Vos P, Kersters K, Falsen E, Pot B, Gillis M et al. Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int J Syst Bacteriol 1985; 35:443–453 [CrossRef]
    [Google Scholar]
  22. Tamaoka J, Ha D-M, Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas . Int J Syst Bacteriol 1987; 37:52–59 [CrossRef]
    [Google Scholar]
  23. Narayan KD, Pandey SK, Das SK. Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti . Curr Microbiol 2010; 61:248–253 [CrossRef][PubMed]
    [Google Scholar]
  24. Yu X-Y, Li Y-F, Zheng J-W, Li Y, Li L et al. Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. Int J Syst Evol Microbiol 2011; 61:255–258 [CrossRef][PubMed]
    [Google Scholar]
  25. Cappuccino JG, Sherman N. Microbiology: a laboratory manual.; 2005
  26. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Chinchester, UK: John Wiley & Sons Ltd.[Google Scholar]; 1991 pp 115–175
  27. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  29. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  38. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  39. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–W185 [CrossRef][PubMed]
    [Google Scholar]
  40. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  41. Collee JG, Watt B, Fowler EB, Brown R. An evaluation of the Gaspak system in the culture of anaerobic bacteria. J Appl Bacteriol 1972; 35:71–82 [CrossRef][PubMed]
    [Google Scholar]
  42. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  43. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  44. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004681
Loading
/content/journal/ijsem/10.1099/ijsem.0.004681
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error