1887

Abstract

Two bacterial strains, FWR-8 and CFWR-9, were isolated from the gut of larvae of that were raised at the National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea. Both strains were strictly aerobic, Gram-stain-positive and non-motile. Strain FWR-8 possessed the highest sequence similarity (98.7 %) to that of 2DFWR-13 and the phylogenetic tree revealed that strain FWR-8 formed a cluster with 2DFWR-13. MSL-13 and N7XX-4 shared a high 16S rRNA gene sequence similarity (97.8 %) and formed a cluster adjacent to the cluster that included 2DFWR-13. The 16S rRNA gene sequence of strain CFWR-9 exhibited the highest similarity (97.7 %) to that of OAct353 and the phylogenetic tree indicated that strain CFWR-9 formed one independent cluster with OAct353 that was within the radius of the genus . The peptidoglycan type, major fatty acids, major menaquinones and total polar lipids of strain FWR-8 were characterized as type B1, iso-C, anteiso-C and anteiso-C, MK-15, MK-16 and MK-14, and diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified lipid, respectively. Those from strain CFWR-9 were type B1, iso-C, anteiso-C and anteiso-C, MK-11, MK-12 and MK-10, and diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified lipid, respectively. Based on the phenotypic and genotypic data, strains FWR-8 and CFWR-9 each represent a novel species within the genera and , respectively. For these species, the names sp. nov. and sp. nov. have been proposed, with the type strains FWR-8 (=KACC 19322=NBRC 113051) and CFWR-9 (=KACC 19306=NBRC 113046), respectively. Our results also justify a reclassification of as comb. nov. and an emended description of the genus isprovided.

Funding
This study was supported by the:
  • National Institute of Agricultural Sciences (Award PJ01351901)
    • Principle Award Recipient: Soon-WoKwon
  • National institute of Agricultural Sciences (Award PJ01093903)
    • Principle Award Recipient: Soon-WoKwon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004669
2021-04-29
2021-05-17
Loading full text...

Full text loading...

References

  1. Park YH, Suzuki K, Yim DG, Lee KC, Kim E et al. Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 1993; 64:307–313 [CrossRef][PubMed]
    [Google Scholar]
  2. Zhi X-Y, Li W-J, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  3. Heo J, Cho H, Kim MA, Hamada M, Tamura T. Protaetiibacter intestinalis gen. nov., of the family Microbacteriaceae, isolated from gut of Protaetia brevitarsis seulensis, reclassification of Lysinimonas kribbensis Jang, et al. 2013 as Pseudolysinimonas kribbensis gen. nov., comb. nov. and emended description of the genus Lysinimonas Jang, et al. 2013. Int J Syst Evol Microbiol 2019:2101–2107
    [Google Scholar]
  4. Mei L, Piao Z, Hu J, Shi L, Bai Y et al. Lysinimonas yzui sp. nov., isolated from cattail root soil from mine tailings. Int J Syst Evol Microbiol 2020; 70:2003–2007 [CrossRef][PubMed]
    [Google Scholar]
  5. Heo J, Hamada M, Tamura T, Saito S, Lee SD et al. Agromyces protaetiae sp. nov., isolated from gut of larva of Protaetia brevitarsis seulensis . Int J Syst Evol Microbiol 2020; 70:1259–1265 [CrossRef][PubMed]
    [Google Scholar]
  6. Gledhill WE, Casida LE. Predominant catalase-negative soil bacteria. III. Agromyces, gen. n., microorganisms intermediary to Actinomyces and Nocardia . Appl Microbiol 1969; 18:340–349 [CrossRef][PubMed]
    [Google Scholar]
  7. Hamada M, Shibata C, Ishida Y, Tamura T, Yamamura H et al. Agromyces iriomotensis sp. nov. and Agromyces subtropicus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:833–838 [CrossRef][PubMed]
    [Google Scholar]
  8. Jurado V, Groth I, Gonzalez JM, Laiz L, Saiz-Jimenez C. Agromyces subbeticus sp. nov., isolated from a cave in southern Spain. Int J Syst Evol Microbiol 2005; 55:1897–1901 [CrossRef][PubMed]
    [Google Scholar]
  9. Jurado V, Groth I, Gonzalez JM, Laiz L, Schuetze B et al. Agromyces italicus sp. nov., Agromyces humatus sp. nov. and Agromyces lapidis sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 2005; 55:871–875 [CrossRef][PubMed]
    [Google Scholar]
  10. Thawai C, Tanasupawat S, Suwanborirux K, Kudo T. Agromyces tropicus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:605–609 [CrossRef][PubMed]
    [Google Scholar]
  11. Li W-J, Zhang L-P, Xu P, Cui X-L, Xu L-H et al. Agromyces aurantiacus sp. nov., isolated from a Chinese primeval forest. Int J Syst Evol Microbiol 2003; 53:303–307 [CrossRef][PubMed]
    [Google Scholar]
  12. Li J, Lu S, Jin D, Yang J, Lai XH. Agromyces badenianii sp. nov., isolated from plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2020
    [Google Scholar]
  13. Zgurskaya HI, Evtushenko LI, Akimov VN, Voyevoda HV, Dobrovolskaya TG et al. Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int J Syst Bacteriol 1992; 42:635–641 [CrossRef]
    [Google Scholar]
  14. Jung S-Y, Lee S-Y, Oh T-K, Yoon J-H. Agromyces allii sp. nov., isolated from the rhizosphere of Allium victorialis var. platyphyllum . Int J Syst Evol Microbiol 2007; 57:588–593 [CrossRef][PubMed]
    [Google Scholar]
  15. Takeuchi M, Hatano K. Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. Int J Syst Evol Microbiol 2001; 51:1529–1537 [CrossRef][PubMed]
    [Google Scholar]
  16. Cho PS. Illustrated Encyclopedia of Fauna & Flora of Korea, Vol. 10. Insecta (II) Seoul, Korea: Samwha; 1969
    [Google Scholar]
  17. Park HY, Park SS, HW O, Kim JI. General characteristics of the white-spotted flower chafer, Protaetia brevitarsis reared in the laboratory. Korean J Entomol 1994; 24:1–5
    [Google Scholar]
  18. Yoo Y-C, Shin B-H, Hong J-H, Lee J, Chee H-Y et al. Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva. Arch Pharm Res 2007; 30:361–365 [CrossRef][PubMed]
    [Google Scholar]
  19. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [CrossRef][PubMed]
    [Google Scholar]
  20. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  22. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  29. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef][PubMed]
    [Google Scholar]
  32. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [CrossRef][PubMed]
    [Google Scholar]
  33. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  34. Maiese WM, Lechevalier MP, Lechevalier HA, Korshalla J, Kuck N et al. Calicheamicins, a novel family of antitumor antibiotics: taxonomy, fermentation and biological properties. J Antibiot 1989; 42:558–563 [CrossRef][PubMed]
    [Google Scholar]
  35. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  38. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K-ichiro et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium . J Antibiot 2012; 65:427–431 [CrossRef][PubMed]
    [Google Scholar]
  39. Chen Z, Guan Y, Wang J, Li J. Agromyces binzhouensis sp. nov., an actinobacterium isolated from a coastal wetland of the Yellow River Delta. Int J Syst Evol Microbiol 2016; 66:2278–2283 [CrossRef][PubMed]
    [Google Scholar]
  40. Wang R, Chen C, Su Y, Yu X, Zhang C et al. Agromyces mangrovi sp. nov., a novel actinobacterium isolated from mangrove soil. Curr Microbiol 2018; 75:1055–1061 [CrossRef][PubMed]
    [Google Scholar]
  41. Jang Y-H, Kim S-J, Tamura T, Hamada M, Weon H-Y et al. Lysinimonas soli gen. nov., sp. nov., isolated from soil, and reclassification of Leifsonia kribbensis Dastager et al. 2009 as Lysinimonas kribbensis sp. nov., comb. nov. Int J Syst Evol Microbiol 2013; 63:1403–1410 [CrossRef]
    [Google Scholar]
  42. Dastager SG, Lee J-C, Ju Y-J, Park D-J, Kim C-J. Leifsonia kribbensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:18–21 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004669
Loading
/content/journal/ijsem/10.1099/ijsem.0.004669
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error