1887

Abstract

A Gram-stain-positive, strictly aerobic, spore-forming, rod-shaped and non-motile bacterium designated strain SIJ1 was obtained from tidal flat sediment collected from the northern shore of Kuwait Bay, northwest of the Arabian Gulf. Strain SIJ1 grew optimally at 30 °C and pH 7–8 in the presence of 6 % (w/v) NaCl. The cell-wall peptidoglycan was based on -diaminopimelic acid and an unsaturated menaquinone with seven isoprene units (MK-7) was the predominant respiratory quinone. It contained anteiso-C, iso-C and iso-C as the major fatty acids and ribose as the major whole-cell sugar. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipid, an unidentified glycolipid, phosphoglycolipid and an unidentified lipid. Phylogenetic analysis based on 16S rRNA genes revealed that SIJ1 showed a distinct evolutionary lineage within the Firmicutes. The DNA G+C content was 43.1 mol% and the full genome analysis for strain SIJ1 showed that it had a genome size of 3 989 945 bp and contained 4085 predicted protein-encoding genes. The SIJ1 annotated genome showed more stress resistance encoding genes in comparison to its closely related strains. The amino acid identity and average nucleotide identity data for the whole genome proved that strain SIJ1 does indeed represent a novel genus. The strain was distinguishable from the phylogenetically related genera through differences in several phenotypic properties. On the basis of the phenotypic, phylogenetic and genetic data, strain SIJ1 represents a novel genus and species in the family Bacillaceae, for which the name gen. nov., sp. nov. is proposed. The type strain is SIJ1 (=DSM 28862=LMG 28316).

Funding
This study was supported by the:
  • Kuwait University (Award SY03/10)
    • Principle Award Recipient: HudaMahmoud
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004792
2021-04-28
2021-05-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/4/ijsem004792.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004792&mimeType=html&fmt=ahah

References

  1. Decho AW. Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 2000; 20:1257–1273
    [Google Scholar]
  2. Le Hir P, Roberts W, Cazaillet O, Christie M, Bassoullet P. Characterization of intertidal flat hydrodynamics. Cont Shelf Res 2000; 20:1433–1459
    [Google Scholar]
  3. Kim B-S, Oh H-M, Kang H, Chun J. Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol 2005; 43:144–151[PubMed]
    [Google Scholar]
  4. Böttcher ME, Hespenheide B, Llobet-Brossa E, Beardsley C, Larsen O. The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Cont Shelf Res 2000; 20:1749-1769.3:
    [Google Scholar]
  5. Stevens H, Brinkhoff T, Rink B, Vollmers J, Simon M. Diversity and abundance of gram positive bacteria in a tidal flat ecosystem. Environ Mcrobiol 2007; 9:1810–1822
    [Google Scholar]
  6. Mandic-Mulec I, Stefanic P, van Elsas JD. Ecology of Bacillaceae. Microbiol Spectr 2015; 3:TBS-0017-2013 [CrossRef][PubMed]
    [Google Scholar]
  7. Hoffmann T, Bremer E. Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 2011; 193:1552–1562 [CrossRef][PubMed]
    [Google Scholar]
  8. Jebbar M, von Blohn C, Bremer E. Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol lett 1997; 154:325–330
    [Google Scholar]
  9. Crowley E. Compatible solute ectoine review: protection mechanisms and production methods. JUST 2017; 5:32–39
    [Google Scholar]
  10. Riegl BM, Purkis SJ. Coral reefs of the Gulf: adaptation to climatic extremes in the world’s hottest sea. In Riegl BM, Purkis SJ. (editors) Coral reefs of the Gulf Dordrecht: Springer; 2012 pp 1–4
    [Google Scholar]
  11. Al-Qattan AS. Archaeal Abundance and Diversity in Intertidal Flats of Kuwait. Master Thesis Kuwait: Kuwait University; 2014
    [Google Scholar]
  12. Atlas MR. Handbook of Microbiology Media, 3rd ed. USA: CRC press; 2004
    [Google Scholar]
  13. Leifson E. Staining, shape and arrangement of bacterial flagella. J Bacteriol 1951; 62:377–389 [CrossRef][PubMed]
    [Google Scholar]
  14. Beveridge T, Lawrence J, Murray R et al. Sampling and staining for light microscopy. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 p 29
    [Google Scholar]
  15. Gonzalez JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Sagittula stellata gen. Nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Evol Microbiol 1997; 47:773–780
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gephardt P, Murray RGE, Wood WA, Kreig NR. (editors) Methods for General Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  17. Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martínez L. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol 2010; 71:341–350 [CrossRef][PubMed]
    [Google Scholar]
  18. Mahmoud H. Variations in the abundance and structural diversity of microbes forming biofilms in a thermally stressed coral reef system. Mar Pollut Bull 2015; 100:710–718 [CrossRef][PubMed]
    [Google Scholar]
  19. Dhami NK, Reddy MS, Mukherjee A. Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 2013; 4:314 [CrossRef][PubMed]
    [Google Scholar]
  20. Industrienorm DD. Methoden Zur Empfindlichkeitsprüfung von bakteriellen Krankheitserregern (außer Mykobakterien) gegen Chemotherapeutika. Bestimmung Der minimalen Hemmkonzentration nACh Der Agar-Verdünnungsmethode. DIN 1991; 58940:
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID, Inc.; 1990
    [Google Scholar]
  22. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990a; 13:128–130
    [Google Scholar]
  23. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990b; 66:199–202
    [Google Scholar]
  24. Albert RA, Archambault J, Rosselló-Mora R, Tindall BJ, Matheny M. Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 2005; 55:2125–2130 [CrossRef][PubMed]
    [Google Scholar]
  25. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Methods in Microbiology 38 Academic Press; 2011 pp 101–129
    [Google Scholar]
  26. Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H, Stackebrandt E. Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 1996; 142 (Pt 8:2087–2095 [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. SIGS 2014; 10:2
    [Google Scholar]
  30. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  31. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  32. Goloboff PA, Farris JS, TNT NKC. A free program for phylogenetic analysis. Cladistics 2008; 24:774–786
    [Google Scholar]
  33. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [CrossRef][PubMed]
    [Google Scholar]
  34. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 b10 Sunderland: Sinauer Associates; 2002
    [Google Scholar]
  35. Hall A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acid Symp Ser 1999; 41:95–98
    [Google Scholar]
  36. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  38. Liu Y, Liang J, Zhang Z, Yu M, Wang M et al. Aureibacillus halotolerans gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:3950–3958 [CrossRef][PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  40. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H, SM H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  41. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  42. Grant JR, Stothard P. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36:W181–184 [CrossRef][PubMed]
    [Google Scholar]
  43. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–485 [CrossRef][PubMed]
    [Google Scholar]
  44. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118
    [Google Scholar]
  45. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef][PubMed]
    [Google Scholar]
  46. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:1–14
    [Google Scholar]
  47. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  48. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [CrossRef][PubMed]
    [Google Scholar]
  49. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
  50. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–667
    [Google Scholar]
  51. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [CrossRef][PubMed]
    [Google Scholar]
  52. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef][PubMed]
    [Google Scholar]
  53. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [CrossRef][PubMed]
    [Google Scholar]
  54. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  55. Guo L-Y, Ling S-K, Li C-M, Chen G-J, Du Z-J. Bacillus marinisedimentorum sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:198–203 [CrossRef][PubMed]
    [Google Scholar]
  56. Burg MB, Ferraris JD. Intracellular organic osmolytes: function and regulation. J Biol Chem 2008; 283:7309–7313 [CrossRef][PubMed]
    [Google Scholar]
  57. Peters P, Galinski EA, Trüper HG. The biosynthesis of ectoine. FEMS Microbiol Lett 1990; 71:157–162
    [Google Scholar]
  58. Pastor JM, Salvador M, Argandoña M, Bernal V, Reina-Bueno M et al. Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 2010; 28:782–801 [CrossRef][PubMed]
    [Google Scholar]
  59. Osterås M, Boncompagni E, Vincent N, Poggi MC, Le Rudulier D. Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. Proc Natl Acad Sci U S A 1998; 95:11394–11399 [CrossRef][PubMed]
    [Google Scholar]
  60. Kappes RM, Kempf B, Kneip S, Boch J, Gade J et al. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 1999; 32:203–216 [CrossRef][PubMed]
    [Google Scholar]
  61. Mandon K, Osterås M, Boncompagni E, Trinchant JC, Spennato G et al. The Sinorhizobium meliloti glycine betaine biosynthetic genes (betlCBA) are induced by choline and highly expressed in bacteroids. Mol Plant Microbe Interact 2003; 16:709–719 [CrossRef][PubMed]
    [Google Scholar]
  62. Boncompagni E, Dupont L, Mignot T, Osteräs M, Lambert A et al. Characterization of a Snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. J Bacteriol 2000; 182:3717–3725 [CrossRef][PubMed]
    [Google Scholar]
  63. Wargo MJ, Szwergold BS, Hogan DA. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol 2008; 190:2690–2699 [CrossRef][PubMed]
    [Google Scholar]
  64. Moriya Y, Itoh M, Okuda S, Kanehisa M. KAAS: KEGG automatic annotation server. Genome Inform 2005; 5:2005
    [Google Scholar]
  65. Manorama R, Pindi PK, Reddy GSN, Shivaji S. Bhargavaea cecembensis gen. nov., sp. nov., isolated from the Chagos-Laccadive ridge system in the Indian Ocean. Int J Syst Evol Microbiol 2009; 59:2618–2623 [CrossRef][PubMed]
    [Google Scholar]
  66. Chen Y-G, Cui X-L, Wang Y-X, Zhang Y-Q, Tang S-K et al. Virgibacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 2009; 59:2058–2063 [CrossRef][PubMed]
    [Google Scholar]
  67. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the g+ C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 1989; 39:159–167
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004792
Loading
/content/journal/ijsem/10.1099/ijsem.0.004792
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error