1887

Abstract

An anaerobic, Gram-stain-positive, rod-shaped, motile and spore-forming bacterium, designated strain LBM18003, was isolated from pit clay used for making Chinese strong aroma-type liquor. Growth occurred at 20–40 °C (optimum, 30–37 °C), pH 4.5–9.5 (optimum, pH 6.5–7.0) and in the presence of 0.0–1.0 % (w/v) sodium chloride (optimum, 0 %). The predominant fatty acids were C, C, C DMA and C 3-OH, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids and nine unidentified glycolipids. Phylogenetic analysis revealed that strain LBM18003 is a novel member of the family . The 16S rRNA gene sequence similarities of strain LBM18003 to its two most closely related species were less than 94.5 % for distinguishing genera, i.e. closely related to JCM 30532 (94.1 %) and DSM 107079 (93.2 %). The genome size of strain LBM18003 was 2 996 201 bp and its DNA G+C content was 48.48 mol%. Strain LBM18003 exhibited 67.8 and 68.1% pairwise-determined whole-genome average nucleotide identity values to JCM 30532 and DSM 107079, respectively; and showed 62.2 and 61.0 % the average amino acid identity values to JCM 30532 and DSM 107079, respectively; and demonstrated 46.1 and 41.5 % conserved genes to JCM 30532 and DSM 107079, respectively. The comparisons of 16S rRNA gene and genome sequences confirmed that strain LBM18003 represented a novel genus of the family . Based on morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, strain LBM18003 represents a novel species of a novel genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is LBM18003 (=GDMCC 1.1626=JCM 33783).

Funding
This study was supported by the:
  • National First-Class Discipline Program of Light Industry Technology and Engineering (Award LITE2018-12)
    • Principle Award Recipient: WenlaiFan
  • Opening Foundation of National Engineering Research Center of Solid-state Brewing (Award 34757-2015)
    • Principle Award Recipient: YanXu
  • National Natural Science Foundation of China (NSFC) (Award 31530055)
    • Principle Award Recipient: YanXu
  • National Natural Science Foundation of China (NSFC) (Award 21706097)
    • Principle Award Recipient: CongRen
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004789
2021-04-27
2024-04-19
Loading full text...

Full text loading...

References

  1. Rainey FA. Family VIII. Ruminococcaceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology 2nd edn, vol. 3 (The Firmicutes) New York: Springer; 2009 p 1016
    [Google Scholar]
  2. Rainey FA et al. Clostridia class. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. (editors) Bergey’s Manual of Systematics Bacteriology 3 The Firmicutes, 2nd ed. NewYork: Springer; 2009 p 736
    [Google Scholar]
  3. Tindall BJ. The names Hungateiclostridium Zhang et al. 2018, Hungateiclostridium thermocellum (Viljoen et al. 1926) Zhang et al. 2018, Hungateiclostridium cellulolyticum (Patel et al. 1980) Zhang et al. 2018, Hungateiclostridium aldrichii (Yang et al. 1990) Zhang et al. 2018, Hungateiclostridium alkalicellulosi (Zhilina et al. 2006) Zhang et al. 2018, Hungateiclostridium clariflavum (Shiratori et al. 2009) Zhang et al. 2018, Hungateiclostridium straminisolvens (Kato et al. 2004) Zhang et al. 2018 and Hungateiclostridium saccincola (Koeck et al. 2016) Zhang et al. 2018 contravene Rule 51b of the International Code of Nomenclature of Prokaryotes and require replacement names in the genus Acetivibrio Patel et al. 1980. Int J Syst Evol Microbiol 2019; 69:3927–3932 [View Article][PubMed]
    [Google Scholar]
  4. Parte AC. LPSN - List of Prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  5. Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol 2016; 24:523–524 [View Article][PubMed]
    [Google Scholar]
  6. Lambrecht J, Cichocki N, Schattenberg F, Kleinsteuber S, Harms H et al. Key sub-community dynamics of medium-chain carboxylate production. Microb Cell Fact 2019; 18:92–108 [View Article][PubMed]
    [Google Scholar]
  7. Xing BS, Han Y, Wang XC, Wen J, Cao S et al. Persistent action of cow rumen microorganisms in enhancing biodegradation of wheat straw by rumen fermentation. Sci Total Environ 2020; 715:136529 [View Article][PubMed]
    [Google Scholar]
  8. Gao JJ, Liu GY, Li A, Liang CC, Ren C et al. Domination of pit mud microbes in the formation of diverse flavour compounds during Chinese strong aroma-type Baijiu fermentation. LWT 2021; 137:110442 [View Article]
    [Google Scholar]
  9. Chai LJ, Xu PX, Qian W, Zhang XJ, Ma J et al. Profiling the Clostridia with butyrate-producing potential in the mud of Chinese liquor fermentation cellar. Int J Food Microbiol 2019; 297:41–50 [View Article][PubMed]
    [Google Scholar]
  10. Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 2008; 105:2128–2133 [View Article][PubMed]
    [Google Scholar]
  11. Marx H, Graf AB, Tatto NE, Thallinger GG, Mattanovich D et al. Genome sequence of the ruminal bacterium Megasphaera elsdenii . J Bacteriol 2011; 193:5578–5579 [View Article][PubMed]
    [Google Scholar]
  12. Kim BC, Seung Jeon B, Kim S, Kim H, Um Y et al. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 2015; 65:4902–4908 [View Article][PubMed]
    [Google Scholar]
  13. Zhu XY, Zhou Y, Wang Y, Wu TT, Li XZ et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels 2017; 10:102 [View Article][PubMed]
    [Google Scholar]
  14. Flaiz M, Baur T, Brahner S, Poehlein A, Daniel R et al. Caproicibacter fermentans gen. nov., sp. nov., a new caproate-producing bacterium and emended description of the genus Caproiciproducens . Int J Syst Evol Microbiol 2020; 70:4269–4279 [View Article][PubMed]
    [Google Scholar]
  15. Hu XL, Du H, Xu Y. Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production. Int J Food Microbiol 2015; 214:116–122 [View Article][PubMed]
    [Google Scholar]
  16. Wang XS, Du H, Xu Y. Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor. Int J Food Microbiol 2017; 244:27–35 [View Article][PubMed]
    [Google Scholar]
  17. Wiesenborn DP, Rudolph FB, Papoutsakis ET. Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents. Appl Environ Microbiol 1988; 54:2717–2722 [View Article][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  23. Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  24. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [View Article][PubMed]
    [Google Scholar]
  25. Reiner J, Pisani L, Qiao W, Singh R, Yang Y et al. Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet-Biedl Syndrome 9 (BBS9) deletion. NPJ Genom Med 2018; 3:3 [View Article][PubMed]
    [Google Scholar]
  26. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  27. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–d860 [View Article][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Goker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  30. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  31. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article][PubMed]
    [Google Scholar]
  32. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  33. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  34. Zhang D, Gao FL, Jakovlic I, Zou H, Zhang J et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 2020; 20:348–355 [View Article][PubMed]
    [Google Scholar]
  35. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  36. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article][PubMed]
    [Google Scholar]
  37. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  38. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article][PubMed]
    [Google Scholar]
  39. Halebian S, Harris B, Finegold SM, Rolfe RD. Rapid method that AIDS in distinguishing gram-positive from gram-negative anaerobic bacteria. J Clin Microbiol 1981; 13:444–448 [View Article][PubMed]
    [Google Scholar]
  40. Negrete-Abascal E, Reyes ME, García RM, Vaca S, Girón JA et al. Flagella and Motility in Actinobacillus pleuropneumoniae . J Bacteriol 2003; 185:664–668 [View Article][PubMed]
    [Google Scholar]
  41. Wang H, Li XZ, Wang Y, Tao Y, Lu SW et al. Improvement of n-caproic acid production with Ruminococcaceae bacterium CPB6: selection of electron acceptors and carbon sources and optimization of the culture medium. Microb Cell Fact 2018; 17:99–107 [View Article][PubMed]
    [Google Scholar]
  42. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  43. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Microbiol 2008; 48:459–470 [View Article]
    [Google Scholar]
  44. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 2008; 47:87–95 [View Article]
    [Google Scholar]
  45. Van Ooteghem SA, Jones A, Van Der Lelie D, Dong B, Mahajan D. H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett 2004; 26:1223–1232 [View Article][PubMed]
    [Google Scholar]
  46. Albuquerque L, Polonia ARM, Barroso C, Froufe HJC, Lage O et al. Raineya orbicola gen. nov., sp. nov. a slightly thermophilic bacterium of the phylum Bacteroidetes and the description of Raineyaceae fam. nov. Int J Syst Evol Microbiol 2018; 68:982–989 [View Article][PubMed]
    [Google Scholar]
  47. Lagier JC, Bibi F, Ramasamy D, Azhar EI, Robert C et al. Non contiguous-finished genome sequence and description of Clostridium jeddahense sp. nov. Stand Genomic Sci 2014; 9:1003–1019 [View Article][PubMed]
    [Google Scholar]
  48. Moore WEC, Cato EP, Holdeman LV. Ruminococcus bromii sp. n. and emendation of the description of Ruminococcus Sijpestein. Int J Syst Evol Microbiol 1972; 22:78–80 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004789
Loading
/content/journal/ijsem/10.1099/ijsem.0.004789
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error