1887
Preview this article:
Zoom in
Zoomout

Candidatus List No. 2. Lists of names of prokaryotic taxa, Page 1 of 1

| /docserver/preview/fulltext/ijsem/71/4/ijsem004671-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Keyword(s): Candidatus , list and names
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004671
2021-04-21
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/4/ijsem004671.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004671&mimeType=html&fmt=ahah

References

  1. Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Candidatus list no. 1. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956–4042
    [Google Scholar]
  2. Oren A, Garrity GM, Trujillo ME. Registration of names of prokaryotic Candidatus taxa in the IJSEM. Int J Syst Evol Microbiol 2020; 70:3955 [CrossRef]
    [Google Scholar]
  3. Mehrshad M, Salcher MM, Okazaki Y, Nakano S-I, Šimek K et al. Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi . Microbiome 2018; 6:176 [CrossRef][PubMed]
    [Google Scholar]
  4. Castelle CJ, Brown CT, Thomas BC, Williams KH, Banfield JF. Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the candidate phyla radiation. Sci Rep 2017; 7:40101 [CrossRef]
    [Google Scholar]
  5. Anantharaman K, Brown CT, Burstein D, Castelle CJ, Probst AJ et al. Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum. PeerJ 2016; 4:e1607 [CrossRef]
    [Google Scholar]
  6. Cohen G, Hoffart L, La Scola B, Raoult D, Drancourt M. Ameba-associated keratitis, France. Emerg Infect Dis 2011; 17:1306–1308 [CrossRef]
    [Google Scholar]
  7. Colman DR, Jay ZJ, Inskeep WP, Jennings RdeM, Maas KR et al. Novel, deep-branching heterotrophic bacterial populations recovered from thermal spring metagenomes. Front Microbiol 2016; 7:304 [CrossRef]
    [Google Scholar]
  8. Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A et al. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 2018; 9:e0224–17 [CrossRef]
    [Google Scholar]
  9. Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 2017; 552:400–403 [CrossRef]
    [Google Scholar]
  10. Dirren S, Salcher MM, Blom JF, Schweikert M, Posch T. Ménage-à-trois: the amoeba Nuclearia sp. from Lake Zurich with its ecto- and endosymbiotic bacteria. Protist 2014; 165:745–758 [CrossRef]
    [Google Scholar]
  11. Murakami T, Segawa T, Bodington D, Dial R, Takeuchi N et al. Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus . FEMS Microbiol Ecol 2015; 91:fiv003 [CrossRef]
    [Google Scholar]
  12. Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol 2017; 19:459–474 [CrossRef]
    [Google Scholar]
  13. Strassert JFH, Köhler T, Wienemann THG, Ikeda-Ohtsubo W, Faivre N et al. Candidatus Ancillula trichonymphae’, a novel lineage of endosymbiotic Actinobacteria in termite gut flagellates of the genus Trichonympha . Environ Microbiol 2012; 14:3259–3270 [CrossRef]
    [Google Scholar]
  14. Williams LE, Wernegreen JJ. Sequence context of indel mutations and their effect on protein evolution in a bacterial endo-symbiont. Genome Biol Evol 2013; 5:599–605 [CrossRef]
    [Google Scholar]
  15. Boscaro V, Fokin SI, Petroni G, Verni F, Keeling PJ et al. Symbiont replacement between bacteria of different classes reveals additional layers of complexity in the evolution of symbiosis in the ciliate Euplotes . Protist 2018; 169:43–52 [CrossRef]
    [Google Scholar]
  16. Gofton AW, Waudby HP, Petit S, Greay TL, Ryan UM et al. Detection and phylogenetic characterisation of novel Anaplasma and Ehrlichia species in Amblyomma triguttatum subsp. from four allopatric populations in Australia. Ticks Tick Borne Dis 2017; 8:749–756 [CrossRef]
    [Google Scholar]
  17. Gofton AW, Loh S-M, Barbosa AD, Paparini A, Gillett A et al. A novel Ehrlichia species in blood and Ixodes ornithorhynci ticks from platypuses (Ornithorhynchus anatinus) in Queensland and Tasmania, Australia. Ticks Tick Borne Dis 2018; 9:435–442 [CrossRef]
    [Google Scholar]
  18. Kawahara M, Rikihisa Y, Lin Q, Isogai E, Tahara K et al. Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl Environ Microbiol 2006; 72:1102–1109 [CrossRef]
    [Google Scholar]
  19. Kadnikov VV, Ivasenko DA, Beletskii AV, Mardanov AV, Danilova EV et al. A novel uncultured bacterium of the family Gallionellaceae: Description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage. Microbiology 2016; 85:449–461 [CrossRef]
    [Google Scholar]
  20. Lin W, Pan Y. Uncultivated magnetotactic cocci from Yuandadu Park in Beijing, China. Appl Environ Microbiol 2009; 75:4046–4052 [CrossRef]
    [Google Scholar]
  21. Kolinko S, Richter M, Glöckner F-O, Brachmann A, Schüler D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol 2016; 18:21–37 [CrossRef]
    [Google Scholar]
  22. Kulichevskaya IS, Ivanova AA, Belova SE, Dedysh SN. A novel filamentous planctomycete of the Isosphaera-Singulisphaera group isolated from a Sphagnum peat bog. Microbiology 2012; 81:446–452 [CrossRef]
    [Google Scholar]
  23. Guidi-Rontani C, Jean MRN, Gonzalez-Rizzo S, Bolte-Kluge S, Gros O. Description of new filamentous toxic Cyanobacteria (Oscillatoriales) colonizing the sulfidic periphyton mat in marine mangroves. FEMS Microbiol Lett 2014; 359:173–181 [CrossRef]
    [Google Scholar]
  24. Casson N, Michel R, Müller K-D, Aubert JD, Greub G. Protochlamydia naegleriophila as etiologic agent of pneumonia. Emerg Infect Dis 2008; 14:168–172 [CrossRef]
    [Google Scholar]
  25. Hahn MW. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 2009; 59:112–117 [CrossRef]
    [Google Scholar]
  26. Pitt A, Schmidt J, Koll U, Hahn MW. Rhodoluna limnophila sp. nov., a bacterium with 1.4 Mbp genome size isolated from freshwater habitats located in Salzburg, Austria. Int J Syst Evol Microbiol 2019; 69:3946–3954 [CrossRef]
    [Google Scholar]
  27. Usher KM, Fromont J, Sutton DC, Toze S. The biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediterranean. Microb Ecol 2004; 48:167–177 [CrossRef]
    [Google Scholar]
  28. Noda S, Shimizu D, Yuki M, Kitade O, Ohkuma M. Host-symbiont cospeciation of termite-gut cellulolytic protists of the genera Teranympha and Eucomonympha and their Treponema endosymbionts. Microbes Environ 2018; 33:26–33
    [Google Scholar]
  29. Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu L-F. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean sea. Environ Microbiol 2009; 11:1646–1657 [CrossRef][PubMed]
    [Google Scholar]
  30. Ji B, Zhang S-D, Zhang W-J, Rouy Z, Alberto F. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. Environ Microbiol 2017; 19:1103–1119 [CrossRef]
    [Google Scholar]
  31. Nielsen JL, Christensen D, Kloppenborg M, Nielsen PH. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 2003; 5:202–211 [CrossRef]
    [Google Scholar]
  32. Thomsen TR, Blackall LL, de Muro MA, Nielsen JL, Nielsen PH. Meganema perideroedes gen. nov., sp. nov., a filamentous alphaproteobacterium from activated sludge. Int J Syst Evol Microbiol 2006; 56:1865–1868 [CrossRef]
    [Google Scholar]
  33. Oren A. On names of genera of prokaryotes that are later homonyms of generic names with standing in the zoological or the botanical nomenclature. Proposal of Neomegalonema gen. nov. and Neomegalonema perideroedes comb. nov. as replacements for the prokaryotic generic name Meganema and the species name Meganema perideroedes. Int J Syst Evol Microbiol 2017; 67:4276–4278 [CrossRef]
    [Google Scholar]
  34. Martinez MA, Woodcroft BJ, Ignacio Espinoza JC, Zayed AA, Singleton CM et al. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Syst Appl Microbiol 2019; 42:54–66 [CrossRef]
    [Google Scholar]
  35. Ward LM, Cardona T, Holland-Moritz H. Evolutionary implications of anoxygenic phototrophy in the bacterial phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol 2019; 10:1658 [CrossRef]
    [Google Scholar]
  36. Youssef NH, Farag IF, Hahn CR, Premathilake H, Fry E et al. Candidatus Krumholzibacterium zodletonense gen. nov., sp nov, the first representative of the candidate phylum Krumholzibacteriota phyl. nov. recovered from an anoxic sulfidic spring using genome resolved metagenomics. Syst Appl Microbiol 2019; 42:85–93 [CrossRef]
    [Google Scholar]
  37. Borrel G, Adam PS, McKay LJ, Chen L-X, Sierra-García IN et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 2019; 4:603–613 [CrossRef]
    [Google Scholar]
  38. Rinke C, Rubino F, Messer LF, Youssef N, Parks DH et al. Correction: a phylogenomic and ecological analysis of the globally abundant marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J 2020; 14:878 [CrossRef]
    [Google Scholar]
  39. Kadnikov VV, Mardanov AV, Beletsky AV, Rakitin AL, Frank YA et al. Phylogeny and physiology of candidate phylum BRC1 inferred from the first complete metagenome-assembled genome obtained from deep subsurface aquifer. Syst Appl Microbiol 2019; 42:67–76 [CrossRef]
    [Google Scholar]
  40. Utami YD, Kuwahara H, Igai K, Murakami T, Sugaya K et al. Genome analyses of uncultured TG2/ZB3 bacteria in ‘Margulisbacteria’ specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME J 2019; 13:455–467 [CrossRef]
    [Google Scholar]
  41. Tan S, Liu J, Fang Y, Hedlund BP, Lian Z-H et al. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME J 2019; 13:2044–2057 [CrossRef]
    [Google Scholar]
  42. Berghuis BA, Yu FB, Schulz F, Blainey PC, Woyke T et al. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc Natl Acad Sci USA 2019; 116:5037–5044 [CrossRef]
    [Google Scholar]
  43. Boyd JA, Jungbluth SP, Leu AO, Evans PN, Woodcroft BJ et al. Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi. ISME J 2019; 13:1269–1279 [CrossRef]
    [Google Scholar]
  44. Aouad M, Borrel G, Brochier-Armanet C, Gribaldo S. Evolutionary placement of Methanonatronarchaeia. Nat Microbiol 2019; 4:558–559 [CrossRef]
    [Google Scholar]
  45. Jones HJ, Kröber E, Stephenson J, Mausz MA, Jameson E et al. A new family of uncultivated bacteria involved in methanogenesis from the ubiquitous osmolyte glycine betaine in coastal saltmarsh sediments. Microbiome 2019; 7:120 [CrossRef]
    [Google Scholar]
  46. Castelli M, Sabaneyeva E, Lanzoni O, Lebedeva N, Floriano AM et al. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales . ISME J 2019; 13:2280–2294 [CrossRef]
    [Google Scholar]
  47. Koziaeva V, Dziuba M, Leão P, Uzun M, Krutkina M et al. Genome-based metabolic reconstruction of a novel uncultivated freshwater magnetotactic coccus “Ca. Magnetaquicoccus inordinatus” UR-1, and proposal of a candidate family, “Ca. Magnetaquicoccaceae”. Front Microbiol 2019; 10:2290 [CrossRef]
    [Google Scholar]
  48. Kadnikov VV, Mardanov AV, Beletsky AV, Karnachuk OV, Ravin NV. Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles 2019; 23:189–200 [CrossRef]
    [Google Scholar]
  49. Andersen MH, McIlroy SJ, Nierychlo M, Nielsen PH, Albertsen M. Genomic insights into Candidatus Amarolinea aalborgensis gen. nov., sp. nov., associated with settleability problems in wastewater treatment plants. Syst Appl Microbiol 2019; 42:77–84 [CrossRef]
    [Google Scholar]
  50. Hinsu AT, Pandit RJ, Patel SH, Psifidi A, Tomley FM et al. Genome reconstruction of a novel carbohydrate digesting bacterium from the chicken caecal microflora. Meta Gene 2019; 20:100543 [CrossRef]
    [Google Scholar]
  51. Klinges JG, Rosales SM, McMinds R, Shaver EC, Shantz AA et al. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J 2019; 13:2938–2953 [CrossRef]
    [Google Scholar]
  52. Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 2019; 568:108–111 [CrossRef]
    [Google Scholar]
  53. Chuvochina M, Rinke C, Parks DH, Rappé MS, Tyson GW et al. The importance of designating type material for uncultured taxa. Syst Appl Microbiol 2019; 42:15–21 [CrossRef]
    [Google Scholar]
  54. Zhang S, Song W, Wemheuer B, Reveillaud J, Webster N et al. Comparative genomics reveals ecological and evolutionary insights into sponge-associated Thaumarchaeota . mSystems 2019; 4:e00288–19 [CrossRef]
    [Google Scholar]
  55. Lemos LN, Medeiros JD, Dini-Andreote F, Fernandes GR, Varani AM. Genomic signatures and co-occurrence patterns of the ultra-small Saccharimonadia (phylum CPR/Patescibacteria) suggest a symbiotic lifestyle. Mol Ecol 2019;28:4259-4271; corrigendum: Mol Ecol 2020;29:1936
    [Google Scholar]
  56. Deeg CM, Zimmer MM, George EE, Husnik F, Keeling PJ et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog 2019; 15:e1007801 [CrossRef]
    [Google Scholar]
  57. Nierychlo M, Miłobędzka A, Petriglieri F, McIlroy B, Nielsen PH et al. The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants. FEMS Microbiol Ecol 2019; 95:fiy228 [CrossRef]
    [Google Scholar]
  58. Zan J, Li Z, Tianero MD, Davis J, Hill RT et al. A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science 2019; 364:eaaw6732 [CrossRef]
    [Google Scholar]
  59. Gruber-Vodicka HR, Leisch N, Kleiner M, Hinzke T, Liebeke M et al. Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nat Microbiol 2019; 4:1465–1474 [CrossRef]
    [Google Scholar]
  60. Fokin SI, Serra V, Ferrantini F, Modeo L, Petroni G. Candidatus Hafkinia simulans” gen. nov., sp. nov., a novel Holospora-like bacterium from the macronucleus of the rare brackish water ciliate Frontonia salmastra (Oligohymenophorea, Ciliophora): Multidisciplinary characterization of the new endosymbiont and its host. Microb Ecol 2019; 77:1092–1106 [CrossRef]
    [Google Scholar]
  61. Knobloch S, Jóhannsson R, Marteinsson V. Bacterial diversity in the marine sponge Halichondria panicea from Icelandic waters and host-specificity of its dominant symbiont “Candidatus Halichondribacter symbioticus”. FEMS Microbiol Ecol 2019; 95:fiy220 [CrossRef]
    [Google Scholar]
  62. Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M et al. Tripartite symbiosis of an anaerobic scuticociliate with two hydrogenosome-associated endosymbionts, a Holospora -related alphaproteobacterium and a methanogenic archaeon. Appl Environ Microbiol 2019; 85:e00854–19 [CrossRef]
    [Google Scholar]
  63. Karthikeyan S, Rodriguez-R LM, Heritier-Robbins P, Kim M, Overholt WA et al. Candidatus Macondimonas diazotrophica”, a novel gammaproteobacterial genus dominating crude-oil-contaminated coastal sediments. ISME J 2019; 13:2129–2134 [CrossRef]
    [Google Scholar]
  64. Nixon SL, Daly RA, Borton MA, Solden LM, Welch SA et al. Genome-resolved metagenomics extends the environmental distribution of the Verrucomicrobia phylum to the deep terrestrial subsurface. mSphere 2019; 4:e00613–00619 [CrossRef]
    [Google Scholar]
  65. McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat Microbiol 2019; 4:614–622 [CrossRef]
    [Google Scholar]
  66. St. John E, Liu Y, Podar M, Stott MB, Meneghin J et al. A new symbiotic nanoarchaeote (Candidatus Nanoclepta minutus) and its host (Zestosphaera tikiterensis gen. nov., sp. nov.) from a new Zealand hot spring. Syst Appl Microbiol 2019; 42:94–106 [CrossRef]
    [Google Scholar]
  67. Hamm JN, Erdmann S, Eloe-Fadrosh EA, Angeloni A, Zhong L et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc Natl Acad Sci U S A 2019; 116:14661–14670 [CrossRef]
    [Google Scholar]
  68. Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D et al. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta . Environ Microbiol 2019; 21:3831–3854 [CrossRef]
    [Google Scholar]
  69. Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci U S A 2019; 116:19675–19684 [CrossRef]
    [Google Scholar]
  70. Sood N, Pradhan PK, Verma DK, Gupta S et al. Epitheliocystis in rohu Labeo rohita (Hamilton, 1822) is caused by novel Chlamydiales . Aquaculture 2019; 505:539–543 [CrossRef]
    [Google Scholar]
  71. Francis TB, Krüger K, Fuchs BM, Teeling H, Amann RI. Candidatus Prosiliicoccus vernus, a spring phytoplankton bloom associated member of the Flavobacteriaceae . Syst Appl Microbiol 2019; 42:41–53 [CrossRef]
    [Google Scholar]
  72. Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P et al. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist 2019; 170:259–282 [CrossRef]
    [Google Scholar]
  73. Kadnikov VV, Mardanov AV, Beletsky AV, Frank YA, Karnachuk OV et al. Complete genome sequence of an uncultured bacterium of the candidate phylum Bipolaricaulota . Microbiology 2019; 88:461–468 [CrossRef]
    [Google Scholar]
  74. Castelli M, Serra V, Senra MVX, Basuri CK, Soares CAG et al. The hidden world of Rickettsiales symbionts: “Candidatus Spectririckettsia obscura,” a novel bacterium found in Brazilian and Indian Paramecium caudatum . Microb Ecol 2019; 77:748–758 [CrossRef]
    [Google Scholar]
  75. Dyksma S, Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. Environ Microbiol Rep 2019; 11:558–570 [CrossRef]
    [Google Scholar]
  76. Thiel V, Garcia Costas AM, Fortney NW, Martinez JN, Tank M et al. Candidatus Thermonerobacter thiotrophicus,” a non-phototrophic member of the Bacteroidetes/Chlorobi with dissimilatory sulfur metabolism in hot spring mat communities. Front Microbiol 2019; 9:3159 [CrossRef]
    [Google Scholar]
  77. Shiratori T, Suzuki S, Kakizawa Y, Ishida K-i. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun 2019; 10:5529 [CrossRef][PubMed]
    [Google Scholar]
  78. Wangkeeree J, Tewaruxsa P, Hanboonsong Y. New bacterium symbiont in the bacteriome of the leafhopper Yamatotettix flavovittatus Matsumura. J Asia Pac Entomol 2019; 22:889–896 [CrossRef]
    [Google Scholar]
  79. Rubio-Rincón FJ, Weissbrodt DG, Lopez-Vazquez CM, Welles L, Abbas B et al. Candidatus Accumulibacter delftensis”: A clade IC novel polyphosphate-accumulating organism without denitrifying activity on nitrate. Water Res 2019; 161:136–151 [CrossRef]
    [Google Scholar]
  80. Boumbanda Koyo CS, Amanzougaghene N, Davoust B, Tshilolo L, Lekana-Douki JB et al. Genetic diversity of human head lice and molecular detection of associated bacterial pathogens in Democratic Republic of Congo. Parasit Vectors 2019; 12:290 [CrossRef]
    [Google Scholar]
  81. Tsementzi D, Rodriguez-R LM, Ruiz-Perez CA, Meziti A, Hatt JK et al. Ecogenomic characterization of widespread, closely-related SAR11 clades of the freshwater genus “Candidatus Fonsibacter” and proposal of Ca. Fonsibacter lacus sp. nov. Syst Appl Microbiol 2019; 42:495–505 [CrossRef]
    [Google Scholar]
  82. Dahmani M, Davoust B, Sambou M, Bassene H, Scandola P et al. Molecular investigation and phylogeny of species of the Anaplasmataceae infecting animals and ticks in Senegal. Parasit Vectors 2019; 12:495 [CrossRef]
    [Google Scholar]
  83. Campeão ME, Swings J, Silva BS, Otsuki K, Thompson FL et al. 'Candidatus Colwellia aromaticivorans' sp. nov., 'Candidatus Halocyntiibacter alkanivorans' sp. nov., and 'Candidatus Ulvibacter alkanivorans' sp. nov. genome sequences. Microbiol Resour Announc 2019; 8:e00086–19 [CrossRef]
    [Google Scholar]
  84. Onetto CA, Grbin PR, McIlroy SJ, Eales KL. Genomic insights into the metabolism of ‘Candidatus Defluviicoccus seviourii’, a member of Defluviicoccus cluster III abundant in industrial activated sludge. FEMS Microbiol Ecol 2019; 95:fiy231 [CrossRef]
    [Google Scholar]
  85. Lynn GE, Burkhardt NY, Felsheim RF, Nelson CM, Oliver JD et al. Ehrlichia isolate from a Minnesota tick: Characterization and genetic transformation. Appl Environ Microbiol 2019; 85:e00866–19 [CrossRef]
    [Google Scholar]
  86. Nguyen TV, Wibberg D, Vigil-Stenman T, Berckx F, Battenberg K et al. Frankia-enriched metagenomes from the earliest diverging symbiotic Frankia cluster: they come in teams. Genome Biol Evol 2019; 11:2273–2291 [CrossRef]
    [Google Scholar]
  87. Reis AC, Kolvenbach BA, Chami M, Gales L, Egas C et al. Comparative genomics reveals a novel genetic organization of the sad cluster in the sulfonamide-degrader ‘Candidatus Leucobacter sulfamidivorax’ strain GP. BMC Genomics 2019; 20:885 [CrossRef]
    [Google Scholar]
  88. Lanzoni O, Sabaneyeva E, Modeo L, Castelli M, Lebedeva N et al. Diversity and environmental distribution of the cosmopolitan endosymbiont “Candidatus Megaira . Sci Rep 2019; 9:1179 [CrossRef]
    [Google Scholar]
  89. Kadnikov VV, Mardanov AV, Beletsky AV, Frank YA, Karnachuk OV et al. Genome of a member of the candidate archaeal phylum Verstraetearchaeota from a subsurface thermal aquifer revealed pathways of methyl-reducing methanogenesis and fermentative metabolism. Microbiology 2019; 88:316–323 [CrossRef]
    [Google Scholar]
  90. Alves RJE, Kerou M, Zappe A, Bittner R, Abby SS et al. Ammonia oxidation by the Arctic terrestrial thaumarchaeote Candidatus Nitrosocosmicus arcticus is stimulated by increasing temperatures. Front Microbiol 2019; 10:1571 [CrossRef]
    [Google Scholar]
  91. Verce M, De Vuyst L, Weckx S. Shotgun metagenomics of a water kefir fermentation ecosystem reveals a novel Oenococcus species. Front Microbiol 2019; 10:479 [CrossRef]
    [Google Scholar]
  92. Verce M, De Vuyst L, Weckx S. The metagenome-assembled genome of Candidatus Oenococcus aquikefiri from water kefir represents the species Oenococcus sicerae . Food Microbiol 2020; 88:103402 [CrossRef]
    [Google Scholar]
  93. Salter SJ, Scott P, Page AJ, Tracey A, de Goffau MC et al. Candidatus Ornithobacterium hominis': insights gained from draft genomes obtained from nasopharyngeal swabs. Microb Genom 2019; 5: [CrossRef]
    [Google Scholar]
  94. Lawrence KA, Harris TM, Salter SJ, Hall RW, Smith-Vaughan HC et al. Method for culturing Candidatus Ornithobacterium hominis. J Microbiol Methods 2019; 159:157–160 [CrossRef]
    [Google Scholar]
  95. Gaisin VA, Burganskaya EI, Grouzdev DS, Osipova NS, Ashikhmin AA et al. Candidatus Oscillochloris fontis’: a novel mesophilic phototrophic Chloroflexota bacterium belonging to the ubiquitous Oscillochloris genus. FEMS Microbiol Lett 2019; 366:fnz097 [CrossRef]
    [Google Scholar]
  96. Qin X-R, Han H-J, Han F-J, Zhao F-M, Zhang Z-T et al. Rickettsia japonica and novel Rickettsia species in ticks, China. Emerg Infect Dis 2019; 25:992–995 [CrossRef]
    [Google Scholar]
  97. Peckle M, Luz HR, Labruna MB, Serpa MCA, Lima S et al. Multi-locus phylogenetic analysis groups the New World bacterium Rickettsia sp. strain ApPR with the Old World species R. africae; proposal of “Candidatus Rickettsia paranaensis . Ticks Tick Borne Dis 2019; 10:101261 [CrossRef]
    [Google Scholar]
  98. Jäckle O, Seah BKB, Tietjen M, Leisch N, Liebeke M et al. Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula . Proc Natl Acad Sci U S A 2019; 116:8505–8514 [CrossRef]
    [Google Scholar]
  99. Grouzdev DS, Burganskaya EI, Krutkina MS, Sukhacheva MV, Gorlenko VM. Genome sequence of “Candidatus Viridilinea halotolerans” Chok-6, isolated from a saline sulfide-rich spring. Microbiol Resour Announc 2019; 8:e01614–01618 [CrossRef]
    [Google Scholar]
  100. Gaisin VA, Burganskaya EI, Grouzdev DS, Ashikhmin AA, Kostrikina NA et al. Candidatus Viridilinea mediisalina’, a novel phototrophic Chloroflexi bacterium from a Siberian soda lake. FEMS Microbiol Lett 2019; 366:fnz043 [CrossRef]
    [Google Scholar]
  101. Kruse T, Ratnadevi CM, Erikstad H-A, Birkeland N-K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph "Candidatus Methylacidiphilum kamchatkense" strain Kam1 and comparison with its closest relatives. BMC Genomics 2019; 20:642 [CrossRef][PubMed]
    [Google Scholar]
  102. Pandit PS, Hoppert M, Rahalkar MC. Description of 'Candidatus Methylocucumis oryzae', a novel Type I methanotroph with large cells and pale pink colour, isolated from an Indian rice field. Antonie van Leeuwenhoek 2018; 111:2473–2484 [CrossRef][PubMed]
    [Google Scholar]
  103. Pandit PS, Rahalkar MC. Renaming of 'Candidatus Methylocucumis oryzae' as Methylocucumis oryzae gen. nov., sp. nov., a novel Type I methanotroph isolated from India. Antonie van Leeuwenhoek 2019; 112:955–959 [CrossRef][PubMed]
    [Google Scholar]
  104. Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H et al. Ultrastructure and phylogenetic analysis of 'Candidatus Neoehrlichia mikurensis' in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol 2004; 54:1837–1843 [CrossRef][PubMed]
    [Google Scholar]
  105. Wass L, Grankvist A, Bell-Sakyi L, Bergström M, Ulfhammer E et al. Cultivation of the causative agent of human neoehrlichiosis from clinical isolates identifies vascular endothelium as a target of infection. Emerg Microbes Infect 2019; 8:413–425 [CrossRef]
    [Google Scholar]
  106. Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J 2016; 10:1051–1063 [CrossRef][PubMed]
    [Google Scholar]
  107. Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M et al. Nitro-sopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria . Int J Syst Evol Microbiol 2019; 69:1892–1902 [CrossRef][PubMed]
    [Google Scholar]
  108. Portier P, Pédron J, Taghouti G, Fischer-Le Saux M, Caullireau E et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int J Syst Evol Microbiol 2019; 69:3207–3216 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004671
Loading
/content/journal/ijsem/10.1099/ijsem.0.004671
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error