-
Volume 157,
Issue 3,
2011
Volume 157, Issue 3, 2011
- Cell And Molecular Biology Of Microbes
-
-
-
Anabaena sp. strain PCC 7120 conR contains a LytR-CpsA-Psr domain, is developmentally regulated, and is essential for diazotrophic growth and heterocyst morphogenesis
More LessThe conR (all0187) gene of the filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 is predicted to be part of a family of proteins that contain the LytR-CpsA-Psr domain associated with septum formation and cell wall maintenance. The conR gene was originally misannotated as a transcription regulator. Northern RNA blot analysis showed that conR expression was upregulated 8 h after nitrogen step-down. Fluorescence microscopy of a P conR –gfp reporter strain revealed increased GFP fluorescence in proheterocysts and heterocysts beginning 9 h after nitrogen step-down. Insertional inactivation of conR caused a septum-formation defect of vegetative cells grown in nitrate-containing medium. In nitrate-free medium, mutant filaments formed abnormally long heterocysts and were defective for diazotrophic growth. Septum formation between heterocysts and adjacent vegetative cells was abnormal, often with one or both poles of the heterocysts appearing partially open. In a conR mutant, expression of nifH was delayed after nitrogen step-down and nitrogenase activity was approximately 70 % of wild-type activity, indicating that heterocysts of the conR mutant strain are partially functional. We hypothesize that the diazotrophic growth defect is caused by an inability of the heterocysts to transport fixed nitrogen to the neighbouring vegetative cells.
-
-
-
-
Roles of flavonoids and the transcriptional regulator TtsI in the activation of the type III secretion system of Bradyrhizobium elkanii SEMIA587
More LessBradyrhizobium elkanii SEMIA587 is a symbiotic nitrogen-fixing bacterium of the group commonly called rhizobia, which induce nodule formation in legumes, and is widely used in Brazilian commercial inoculants of soybean. In response to flavonoid compounds released by plant roots, besides Nod factors, other molecular signals are secreted by rhizobia, such as proteins secreted by type III secretion systems (T3SSs). Rhizobial T3SSs are activated by the transcription regulator TtsI, which binds to sequences present in the promoter regions of T3SS genes via a conserved sequence called the tts box. To study the role of the T3SS of B. elkanii SEMIA587, ttsI was mutated. Protein secretion and flavonoid induction analysis, as well as nodulation tests, were performed with the wild-type and mutant strains. The results obtained showed that B. elkanii SEMIA587 secretes at least two proteins (NopA and NopL, known rhizobial T3SS substrates) after genistein induction, whilst supernatants of the ttsI mutant did not contain these Nops. Unusually for rhizobia, the promoter region of the B. elkanii SEMIA587 ttsI gene contains a tts box, which is responsive to flavonoid induction and to which TtsI can bind. Nodulation tests performed with three different leguminous plants showed that the B. elkanii SEMIA587 ttsI mutant displays host-dependent characteristics; in particular, nodulation of two soybean cultivars, Peking and EMBRAPA 48, was more efficient when TtsI of B. elkanii was functional.
-
-
-
cAMP receptor protein (CRP) positively regulates the yihU–yshA operon in Salmonella enterica serovar Typhi
More LessSalmonella enterica serovar Typhi (S. Typhi) is the aetiological agent of typhoid fever in humans. This bacterium is also able to persist in its host, causing a chronic disease by colonizing the spleen, liver and gallbladder, in the last of which the pathogen forms biofilms in order to survive the bile. Several genetic components, including the yihU–yshA genes, have been suggested to be involved in the survival of Salmonella in the gallbladder. In this work we describe how the yihU–yshA gene cluster forms a transcriptional unit regulated positively by the cAMP receptor global regulator CRP (cAMP receptor protein). The results obtained show that two CRP-binding sites on the regulatory region of the yihU–yshA operon are required to promote transcriptional activation. In this work we also demonstrate that the yihU–yshA transcriptional unit is carbon catabolite-repressed in Salmonella, indicating that it forms part of the CRP regulon in enteric bacteria.
-
-
-
Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat
More LessSalmonella enterica serovar Typhimurium has at least nine multidrug efflux pumps. Among these, AcrAB is constitutively expressed and is the most efficient, playing a role in both drug resistance and virulence. The acrAB locus is induced by indole, Escherichia coli-conditioned medium, and bile salts. This induction is dependent on RamA through the binding sequence in the upstream region of acrA that binds RamA. In the present study, we made a detailed investigation of the ramA and acrAB induction mechanisms in Salmonella in response to indole, a biological oxidant for bacteria. We found that acrAB and ramA induction in response to indole is dependent on RamR. However, the cysteine residues of RamR do not play a role in the induction of ramA in response to indole, and the oxidative effect of indole is therefore not related to ramA induction via RamR. Furthermore, we showed that paraquat, a superoxide generator, induces acrAB but not ramA. We further discovered that the mechanism of acrAB induction in response to paraquat is dependent on SoxS. The data indicate that there are at least two independent induction pathways for acrAB in response to extracellular signals such as indole and paraquat. We propose that Salmonella utilizes these regulators for acrAB induction in response to extracellular signals in order to adapt itself to environmental conditions.
-
-
-
clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis
Here, we transcriptionally and phenotypically characterized the clpB gene from Enterococcus faecalis. Northern blot analysis identified a monocistronic mRNA strongly induced at 48 and 50 °C. In silico analysis identified that the clpB gene encodes a protein of 868 aa with a predicted molecular mass of approximately 98 kDa, presenting two conserved ATP-binding domains. Sequence analysis also identified a CtsR-binding box upstream of the putative −10 sequence, and inactivation of the ctsR gene resulted in an approximately 2-log increase in clpB mRNA expression, confirming ClpB as a member of the CtsR regulon. While expression of clpB was induced by heat stress, a ΔclpB strain grew relatively well under many different stressful conditions, including elevated temperatures. However, expression of ClpB appears to play a major role in induced thermotolerance and in pathogenesis, as assessed by using the Galleria mellonella virulence model.
-
-
-
A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus
We have established a plasmid-based system that enables tightly controlled gene expression and the generation of GFP fusion proteins in Staphylococcus aureus simply and rapidly. This system takes advantage of an Escherichia coli–S. aureus shuttle vector that contains the replication region of the S. aureus theta-mode multiresistance plasmid pSK41, and is therefore a stable low-copy-number plasmid in the latter organism. This vector also contains a multiple cloning site downstream of the IPTG-inducible Pspac promoter for insertion of the gene of interest. Production of encoded proteins can be stringently regulated in an IPTG-dependent manner by introducing a pE194-based plasmid, pGL485, carrying a constitutively expressed lacI gene. Using GFP fusions to two essential proteins of S. aureus, FtsZ and NusA, we showed that our plasmid allowed tightly controlled gene expression and accurate localization of fusion proteins with no detrimental effect on cells at low inducer concentrations. At higher IPTG concentrations, we obtained sixfold overproduction of protein compared with wild-type levels, with FtsZ–GFP-expressing cells showing lysis and delocalized fluorescence, while NusA–GFP showed only delocalized fluorescence. These results show that our system is capable of titratable induction of gene expression for localization or overexpression studies.
-
-
-
Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus
More LessThe SOS response is governed by the transcriptional regulator LexA and is elicited in many bacterial species in response to DNA damaging conditions. Induction of the SOS response is mediated by autocleavage of the LexA repressor resulting in a C-terminal dimerization domain (CTD) and an N-terminal DNA-binding domain (NTD) known to retain some DNA-binding activity. The proteases responsible for degrading the LexA domains have been identified in Escherichia coli as ClpXP and Lon. Here, we show that in the human and animal pathogen Staphylococcus aureus, the ClpXP and ClpCP proteases contribute to degradation of the NTD and to a lesser degree the CTD. In the absence of the proteolytic subunit, ClpP, or one or both of the Clp ATPases, ClpX and ClpC, the LexA domains were stabilized after autocleavage. Production of a stabilized variant of the NTD interfered with mitomycin-mediated induction of sosA expression while leaving lexA unaffected, and also significantly reduced SOS-induced mutagenesis. Our results show that sequential proteolysis of LexA is conserved in S. aureus and that the NTD may differentially regulate a subset of genes in the SOS regulon.
-
-
-
Subunits Rip1p and Cox9p of the respiratory chain contribute to diclofenac-induced mitochondrial dysfunction
The widely used drug diclofenac can cause serious heart, liver and kidney injury, which may be related to its ability to cause mitochondrial dysfunction. Using Saccharomyces cerevisiae as a model system, we studied the mechanisms of diclofenac toxicity and the role of mitochondria therein. We found that diclofenac reduced cell growth and viability and increased levels of reactive oxygen species (ROS). Strains increasingly relying on respiration for their energy production showed enhanced sensitivity to diclofenac. Furthermore, oxygen consumption was inhibited by diclofenac, suggesting that the drug inhibits respiration. To identify the site of respiratory inhibition, we investigated the effects of deletion of respiratory chain subunits on diclofenac toxicity. Whereas deletion of most subunits had no effect, loss of either Rip1p of complex III or Cox9p of complex IV resulted in enhanced resistance to diclofenac. In these deletion strains, diclofenac did not increase ROS formation as severely as in the wild-type. Our data are consistent with a mechanism of toxicity in which diclofenac inhibits respiration by interfering with Rip1p and Cox9p in the respiratory chain, resulting in ROS production that causes cell death.
-
-
-
Replication patterns and organization of replication forks in Vibrio cholerae
More LessWe have investigated the replication patterns of the two chromosomes of the bacterium Vibrio cholerae grown in four different media. By combining flow cytometry and quantitative real-time PCR with computer simulations, we show that in rich media, V. cholerae cells grow with overlapping replication cycles of both the large chromosome (ChrI) and the small chromosome (ChrII). In Luria–Bertani (LB) medium, initiation occurs at four copies of the ChrI origin and two copies of the ChrII origin. Replication of ChrII was found to occur at the end of the ChrI replication period in all four growth conditions. Novel cell-sorting experiments with marker frequency analysis support these conclusions. Incubation with protein synthesis inhibitors indicated that the potential for initiation of replication of ChrII was present at the same time as that of ChrI, but was actively delayed until much of ChrI was replicated. Investigations of the localization of SeqA bound to new DNA at replication forks indicated that the forks were co-localized in pairs when cells grew without overlapping replication cycles and in higher-order structures during more rapid growth. The increased degree of fork organization during rapid growth may be a means by which correct segregation of daughter molecules is facilitated.
-
-
-
Effects of high-pressure carbon dioxide on proteins and DNA in Escherichia coli
More LessProtein changes in Escherichia coli, when subjected to high-pressure carbon dioxide (HPCD) at 10 MPa and 3 °C for 5–75 min, were assessed using the Bradford method, 2D electrophoresis (2-DE) and liquid chromatography-electrospray ionization-MS-MS (LC-ESI-MS-MS). The changes in DNA in E. coli under the same conditions were also investigated by using flow cytometry with propidium iodide and acridine orange, agarose gel electrophoresis (AGE) and the comet assay. The results showed that HPCD induced leakage loss of the proteins and DNA of E. coli as a function of treatment time. With regard to the protein changes, 182 proteins in the 2-DE profile were not found in the HPCD-treated E. coli. Among 20 selected protein spots exhibiting significant changes in intensity, 18 protein spots were identified as 15 known proteins and two as hypothetical proteins. These proteins were involved in cell composition, energy metabolism pathways, nucleic acid metabolism, global stress regulation and general metabolism. The DNA denaturation of E. coli induced by HPCD was demonstrated in this study for the first time to our knowledge, and the denaturation was enhanced by increasing treatment time. However, HPCD did not cause DNA degradation, as suggested by both AGE analysis and the comet assay.
-
- Environmental And Evolutionary Microbiology
-
-
-
Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21
An efficient 3,4-dichloroaniline (3,4-DCA)-mineralizing bacterium has been isolated from enrichment cultures originating from a soil sample with a history of repeated exposure to diuron, a major metabolite of which is 3,4-DCA. This bacterium, Bacillus megaterium IMT21, also mineralized 2,3-, 2,4-, 2,5- and 3,5-DCA as sole sources of carbon and energy. These five DCA isomers were degraded via two different routes. 2,3-, 2,4- and 2,5-DCA were degraded via previously unknown dichloroaminophenol metabolites, whereas 3,4- and 3,5-DCA were degraded via dichloroacetanilide.
-
-
-
-
Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii
More LessCurrently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080T, was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.
-
-
-
Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate : quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from l-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate : quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.
-
- Genes And Genomes
-
-
-
Exploring the bZIP transcription factor regulatory network in Neurospora crassa
More LessTranscription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution.
-
-
-
-
Genomic features and insights into the biology of Mycoplasma fermentans
We present the complete genomic sequence of Mycoplasma fermentans, an organism suggested to be associated with the pathogenesis of rheumatoid arthritis in humans. The genome is composed of 977 524 bp and has a mean G+C content of 26.95 mol%. There are 835 predicted protein-coding sequences and a mean coding density of 87.6 %. Functions have been assigned to 58.8 % of the predicted protein-coding sequences, while 18.4 % of the proteins are conserved hypothetical proteins and 22.8 % are hypothetical proteins. In addition, there are two complete rRNA operons and 36 tRNA coding sequences. The largest gene families are the ABC transporter family (42 members), and the functionally heterogeneous group of lipoproteins (28 members), which encode the characteristic prokaryotic cysteine ‘lipobox’. Protein secretion occurs through a pathway consisting of SecA, SecD, SecE, SecG, SecY and YidC. Some highly conserved eubacterial proteins, such as GroEL and GroES, are notably absent. The genes encoding DnaK-DnaJ-GrpE and Tig, forming the putative complex of chaperones, are intact, providing the only known control over protein folding. Eighteen nucleases and 17 proteases and peptidases were detected as well as three genes for the thioredoxin-thioreductase system. Overall, this study presents insights into the physiology of M. fermentans, and provides several examples of the genetic basis of systems that might function as virulence factors in this organism.
-
- Microbial Pathogenicity
-
-
-
The interaction between a non-pathogenic and a pathogenic strain synergistically enhances extra-intestinal virulence in Escherichia coli
Finding two or more genotypes of a single species within an infected sample is a not infrequent event. In this work, three Escherichia coli strains of decreasing extra-intestinal virulence (pathogenic B2S and B1S strains, and the avirulent K-12 MG1655 strain) were tested in septicaemia and urinary tract infection (UTI) mouse models, either separately or in pairs. Survival was monitored and bacteria were counted in various organs. Serum interleukin (IL)-6, tumour necrosis factor alpha (TNFα) and IL-10 were measured. We show that a mix of high amounts of B1S or of MG1655 with low amounts of B2S killed more rapidly (B1S), or killed more mice (MG1655), than either high amounts of B1S, high amounts of MG1655 or low amounts of B2S separately in the mouse septicaemia model. This bacterial synergy persisted when high amounts of dead or abnormal-LPS K-12 cells were injected together with a low amount of B2S. In both septicaemia and UTI models, significantly more bacteria were recovered from the organs of mice injected with the MG1655/B2S mix than from those of mice injected with the inocula separately. Consistently, in the septicaemia model, more IL-6 was secreted before death by the mice that were injected with the mix of bacteria than by the mice that were injected with the inocula separately. The synergistically enhanced mortality in the case of co-infection in the septicaemia model persisted in RFcγ −/−, Myd88 −/− and IL-6−/− knockout mice. This synergistically increased virulence resulting from the interaction between an avirulent and a pathogenic strain of the same bacterial species raises questions about the role of avirulent bacteria in the development of some extra-intestinal infections.
-
-
-
-
Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus
Staphylococcus aureus is the most frequently isolated pathogen in Gram-positive sepsis often complicated by a blood clotting disorder, and is the leading cause of infective endocarditis induced by bacterial destruction of endocardial tissues. The bacterium secretes cysteine proteases referred to as staphopain A (ScpA) and staphopain B (SspB). To investigate virulence activities of staphopains pertinent to clotting disorders and tissue destruction, we examined their effects on collagen, one of the major tissue components, and on plasma clotting. Both staphopains prolonged the partial thromboplastin time of plasma in a dose- and activity-dependent manner, with SspB being threefold more potent than ScpA. Staphopains also prolonged the thrombin time of both plasma and fibrinogen, indicating that these enzymes can cause impaired plasma clotting through fibrinogen degradation. Whereas SspB cleaved the fibrinogen Aα-chain at the C-terminal region very efficiently, ScpA degraded it rather slowly. This explains the superior ability of the former enzyme to impair fibrinogen clottability. Enzymically active staphopains, at concentrations as low as 10 nM, degraded collagen with comparable efficiency. These results show novel virulence activities of staphopains in degrading fibrinogen and collagen, and suggest an involvement of staphopains in the clotting impairment and tissue destruction caused by staphylococcal infection.
-
-
-
Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein
PE_PGRS33 is the most studied member of the unique PE family of mycobacterial proteins. These proteins are composed of a PE domain (Pro–Glu motif), a linker region and a PGRS domain (polymorphic GC-rich-repetitive sequence). Previous studies have shown that PE_PGRS33 is surface-exposed, constitutively expressed during growth and infection, involved in creating antigenic diversity, and able to induce death in transfected or infected eukaryotic cells. In this study, we showed that PE_PGRS33 co-localizes to the mitochondria of transfected cells, a phenomenon dependent on the linker region and the PGRS domain, but not the PE domain. Using different genetic fusions and chimeras, we also demonstrated a direct correlation between localization to the host mitochondria and the induction of cell death. Finally, although all constructs localizing to the mitochondria did induce apoptosis, only the wild-type PE_PGRS33 with its own PE domain also induced primary necrosis, indicating a potentially important role for the PE domain. Considering the importance of primary necrosis in Mycobacterium tuberculosis dissemination during natural infection, the PE_PGRS33 protein may play a crucial role in the pathogenesis of tuberculosis.
-
-
-
Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence
More LessYersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δfim Escherichia coli strain AAEC185 to test the assembled Y. pestis surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection. However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.
-
-
-
The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development
Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of Xac in biofilm formation, mutants in the fliC (flagellin) and the flgE (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in fliC and flgE mutants. However, the fliC and flgE mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the rpfF or the rpfC gene, which both encode proteins involved in cell–cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in Xac pathogenicity and this reduction was more severe when the complete flagellum structure was absent.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
