1887

Abstract

Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as . The 178 predicted DNA-binding TFs in are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of , including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in , we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in , , and showed both conservation and divergence. These data indicate how responds to stress and provide information on pathway evolution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045468-0
2011-03-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/747.html?itemId=/content/journal/micro/10.1099/mic.0.045468-0&mimeType=html&fmt=ahah

References

  1. Bailey L. A., Ebbole D. J.. 1998; The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics148:1813–1820
    [Google Scholar]
  2. Bailey T. L., Elkan C.. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology pp28–36 Menlo Park, CA: AAAI Press;
    [Google Scholar]
  3. Banno S., Noguchi R., Yamashita K., Fukumori F., Kimura M., Yamaguchi I., Fujimura M.. 2007; Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa . Curr Genet51:197–208
    [Google Scholar]
  4. Borkovich K. A., Alex L. A., Yarden O., Freitag M., Turner G. E., Read N. D., Seiler S., Bell-Pedersen D., Paietta J.. other authors 2004; Lessons from the genome sequence of Neurospora crassa : tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev68:1–108
    [Google Scholar]
  5. Chen D., Wilkinson C. R., Watt S., Penkett C. J., Toone W. M., Jones N., Bähler J.. 2008; Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell19:308–317
    [Google Scholar]
  6. Cohen B. A., Pilpel Y., Mitra R. D., Church G. M.. 2002; Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. Mol Biol Cell13:1608–1614
    [Google Scholar]
  7. Colot H. V., Park G., Turner G. E., Ringelberg C., Crew C. M., Litvinkova L., Weiss R. L., Borkovich K. A., Dunlap J. C.. 2006; A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A103:10352–10357
    [Google Scholar]
  8. Davis R. H., De Serres F. J.. 1970; Genetic and microbiological research techniques for Neurospora crassa . Methods Enzymol17A:79–143
    [Google Scholar]
  9. Dementhon K., Iyer G., Glass N. L.. 2006; VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa . Eukaryot Cell5:2161–2173
    [Google Scholar]
  10. Dunlap J. C., Borkovich K. A., Henn M. R., Turner G. E., Sachs M. S., Glass N. L., McCluskey K., Plamann M., Galagan J. E.. other authors 2007; Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet57:49–96
    [Google Scholar]
  11. Ebbole D. J., Paluh J. L., Plamann M., Sachs M. S., Yanofsky C.. 1991; cpc-1 , the general regulatory gene for genes of amino acid biosynthesis in Neurospora crassa , is differentially expressed during the asexual life cycle. Mol Cell Biol11:928–934
    [Google Scholar]
  12. Enjalbert B., Smith D. A., Cornell M. J., Alam I., Nicholls S., Brown A. J., Quinn J.. 2006; Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans . Mol Biol Cell17:1018–1032
    [Google Scholar]
  13. Estruch F.. 2000; Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev24:469–486
    [Google Scholar]
  14. Flint H. J.. 1985; Changes in gene expression elicited by amino acid limitation in Neurospora crassa strains having normal or mutant cross-pathway amino acid control. Mol Gen Genet200:283–290
    [Google Scholar]
  15. Freitag M., Hickey P. C., Raju N. B., Selker E. U., Read N. D.. 2004; GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa . Fungal Genet Biol41:897–910
    [Google Scholar]
  16. Fu Y. H., Marzluf G. A.. 1990; cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa , encodes a sequence-specific DNA-binding protein. J Biol Chem265:11942–11947
    [Google Scholar]
  17. Galagan J. E., Selker E. U.. 2004; RIP: the evolutionary cost of genome defense. Trends Genet20:417–423
    [Google Scholar]
  18. Galagan J. E., Calvo S. E., Borkovich K. A., Selker E. U., Read N. D., Jaffe D., FitzHugh W., Ma L. J., Smirnov S.. other authors 2003; The genome sequence of the filamentous fungus Neurospora crassa . Nature422:859–868
    [Google Scholar]
  19. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O.. 2000; Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell11:4241–4257
    [Google Scholar]
  20. Harbison C. T., Gordon D. B., Lee T. I., Rinaldi N. J., Macisaac K. D., Danford T. W., Hannett N. M., Tagne J. B., Reynolds D. B.. other authors 2004; Transcriptional regulatory code of a eukaryotic genome. Nature431:99–104
    [Google Scholar]
  21. Hertz G. Z., Stormo G. D.. 1999; Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics15:563–577
    [Google Scholar]
  22. Hinnebusch A. G.. 2005; Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol59:407–450
    [Google Scholar]
  23. Kasuga T., Glass N. L.. 2008; Dissecting colony development of Neurospora crassa using mRNA profiling and comparative genomics approaches. Eukaryot Cell7:1549–1564
    [Google Scholar]
  24. Kasuga T., Townsend J. P., Tian C., Gilbert L. B., Mannhaupt G., Taylor J. W., Glass N. L.. 2005; Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Res33:6469–6485
    [Google Scholar]
  25. Kellis M., Birren B. W., Lander E. S.. 2004; Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae . Nature428:617–624
    [Google Scholar]
  26. Kuge S., Jones N., Nomoto A.. 1997; Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J16:1710–1720
    [Google Scholar]
  27. Kuge S., Arita M., Murayama A., Maeta K., Izawa S., Inoue Y., Nomoto A.. 2001; Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol21:6139–6150
    [Google Scholar]
  28. Lessing F., Kniemeyer O., Wozniok I., Loeffler J., Kurzai O., Haertl A., Brakhage A. A.. 2007; The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot Cell6:2290–2302
    [Google Scholar]
  29. Liu X., Brutlag D. L., Liu J. S.. 2001; BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes Pac Symp Biocomput;127–138
    [Google Scholar]
  30. Liu X. S., Brutlag D. L., Liu J. S.. 2002; An algorithm for finding protein–DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol20:835–839
    [Google Scholar]
  31. Margolin B. S., Freitag M., Selker E. U.. 1997; Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genet Newsl44:34–36
    [Google Scholar]
  32. McCluskey K.. 2003; The Fungal Genetics Stock Center: from molds to molecules. Adv Appl Microbiol52:245–262
    [Google Scholar]
  33. Metzenberg R. L.. 2004; Bird medium: an alternative to Vogel medium. Fungal Genet Newsl51:19–20
    [Google Scholar]
  34. Paietta J. V.. 1992; Production of the CYS3 regulator, a bZIP DNA-binding protein, is sufficient to induce sulfur gene expression in Neurospora crassa . Mol Cell Biol12:1568–1577
    [Google Scholar]
  35. Perkins D. D., Radford A., Sachs M. S.. 2001; The Neurospora Compendium: Chromosomal Loci San Diego, CA: Academic Press;
    [Google Scholar]
  36. Rao T. K., DeBusk A. G.. 1973; Characteristics of a transport-deficient mutant ( nap ) of Neurospora crassa . Biochim Biophys Acta323:619–626
    [Google Scholar]
  37. Rep M., Proft M., Remize F., Tamás M., Serrano R., Thevelein J. M., Hohmann S.. 2001; The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol40:1067–1083
    [Google Scholar]
  38. Ruepp A., Zollner A., Maier D., Albermann K., Hani J., Mokrejs M., Tetko I., Güldener U., Mannhaupt G.. other authors 2004; The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res32:5539–5545
    [Google Scholar]
  39. Shiu S. H., Shih M. C., Li W. H.. 2005; Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol139:18–26
    [Google Scholar]
  40. Takahashi M., Yamashita K., Shiozawa A., Ichiishi A., Fukumori F., Fujimura M.. 2010; An AP-1-like transcription factor, NAP-1, regulates expression of the glutathione S -transferase and NADH : flavin oxidoreductase genes in Neurospora crassa . Biosci Biotechnol Biochem74:746–752
    [Google Scholar]
  41. Tan K., Feizi H., Luo C., Fan S. H., Ravasi T., Ideker T. G.. 2008; A systems approach to delineate functions of paralogous transcription factors: role of the Yap family in the DNA damage response. Proc Natl Acad Sci U S A105:2934–2939
    [Google Scholar]
  42. Tian C., Kasuga T., Sachs M. S., Glass N. L.. 2007; Transcriptional profiling of cross pathway control in Neurospora crassa and comparative analysis of the Gcn4 and CPC1 regulons. Eukaryot Cell6:1018–1029
    [Google Scholar]
  43. Townsend J. P., Hartl D. L.. 2002; Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments. Genome Biol3:RESEARCH0071
    [Google Scholar]
  44. Townsend J. P., Taylor J. W.. 2005; Designing experiments using spotted microarrays to detect gene regulation differences within and among species. Methods Enzymol395:597–617
    [Google Scholar]
  45. Vivancos A. P., Castillo E. A., Jones N., Ayté J., Hidalgo E.. 2004; Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol Microbiol52:1427–1435
    [Google Scholar]
  46. Vivancos A. P., Jara M., Zuin A., Sansó M., Hidalgo E.. 2006; Oxidative stress in Schizosaccharomyces pombe : different H2O2 levels, different response pathways. Mol Genet Genomics276:495–502
    [Google Scholar]
  47. Vogel H. J.. 1956; A convenient growth medium for Neurospora . Microbiol Genet Bull13:42–46
    [Google Scholar]
  48. Wang Y., Cao Y. Y., Jia X. M., Cao Y. B., Gao P. H., Fu X. P., Ying K., Chen W. S., Jiang Y. Y.. 2006; Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans . Free Radic Biol Med40:1201–1209
    [Google Scholar]
  49. Workman C. T., Mak H. C., McCuine S., Tagne J. B., Agarwal M., Ozier O., Begley T. J., Samson L. D., Ideker T.. 2006; A systems approach to mapping DNA damage response pathways. Science312:1054–1059
    [Google Scholar]
  50. Zhang X., De Micheli M., Coleman S. T., Sanglard D., Moye-Rowley W. S.. 2000; Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol Microbiol36:618–629
    [Google Scholar]
  51. Znaidi S., Barker K. S., Weber S., Alarco A. M., Liu T. T., Boucher G., Rogers P. D., Raymond M.. 2009; Identification of the Candida albicans Cap1p regulon. Eukaryot Cell8:806–820
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045468-0
Loading
/content/journal/micro/10.1099/mic.0.045468-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error