1887

Abstract

pv. () is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of in biofilm formation, mutants in the (flagellin) and the (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in and mutants. However, the and mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the or the gene, which both encode proteins involved in cell–cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in pathogenicity and this reduction was more severe when the complete flagellum structure was absent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044255-0
2011-03-01
2020-10-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/819.html?itemId=/content/journal/micro/10.1099/mic.0.044255-0&mimeType=html&fmt=ahah

References

  1. Aizawa S. I.. 1996; Flagellar assembly in Salmonella typhimurium . Mol Microbiol19:1–5
    [Google Scholar]
  2. Barber C. E., Tang J. L., Feng J. X., Pan M. Q., Wilson T. J., Slater H., Dow J. M., Williams P., Daniels M. J.. 1997; A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol24:555–566
    [Google Scholar]
  3. Branda S. S., Vik S., Friedman L., Kolter R.. 2005; Biofilms: the matrix revisited. Trends Microbiol13:20–26
    [Google Scholar]
  4. Brunings A. M., Gabriel D. W.. 2003; Xanthomonas citri : breaking the surface. Mol Plant Pathol4:141–157
    [Google Scholar]
  5. Cadmus M. C., Rogovin S. P., Burton K. A., Pittsley J. E., Knutson C. A., Jeanes A.. 1976; Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain. Can J Microbiol22:942–948
    [Google Scholar]
  6. Chevance F. F., Hughes K. T.. 2008; Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol6:455–465
    [Google Scholar]
  7. da Silva A. C., Ferro J. A., Reinach F. C., Farah C. S., Furlan L. R., Quaggio R. B., Monteiro-Vitorello C. B., Van Sluys M. A., Almeida N. F.. other authors 2002; Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature417:459–463
    [Google Scholar]
  8. Davey M. E., O'Toole G. A.. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev64:847–867
    [Google Scholar]
  9. do Amaral A. M., Toledo C. P., Baptista J. C., Machado M. A.. 2005; Transformation of Xanthomonas axonopodis pv. citri by electroporation. Fitopatol Bras30:292–294
    [Google Scholar]
  10. Dow J. M., Crossman L., Findlay K., He Y. Q., Feng J. X., Tang J. L.. 2003; Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A100:10995–11000
    [Google Scholar]
  11. Harshey R. M.. 1994; Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol13:389–394
    [Google Scholar]
  12. He Y. W., Xu M., Lin K., Ng Y. J., Wen C. M., Wang L. H., Liu Z. D., Zhang H. B., Dong Y. H.. other authors 2006; Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris : identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol59:610–622
    [Google Scholar]
  13. Henrichsen J.. 1972; Bacterial surface translocation: a survey and a classification. Bacteriol Rev36:478–503
    [Google Scholar]
  14. Herrera C. M., Koutsoudis M. D., Wang X., von Bodman S. B.. 2008; Pantoea stewartii subsp. stewartii exhibits surface motility, which is a critical aspect of Stewart's wilt disease development on maize. Mol Plant–Microbe Interact21:1359–1370
    [Google Scholar]
  15. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersboll B. K., Molin S.. 2000; Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology146:2395–2407
    [Google Scholar]
  16. Horng Y. T., Deng S. C., Daykin M., Soo P. C., Wei J. R., Luh K. T., Ho S. W., Swift S., Lai H. C., Williams P.. 2002; The LuxR family protein SpnR functions as a negative regulator of N -acylhomoserine lactone-dependent quorum sensing in Serratia marcescens . Mol Microbiol45:1655–1671
    [Google Scholar]
  17. Jahn C. E., Willis D. K., Charkowski A. O.. 2008; The flagellar sigma factor fliA is required for Dickeya dadantii virulence. Mol Plant-Microbe Interact21:1431–1442
    [Google Scholar]
  18. Kaiser D.. 2007; Bacterial swarming: a re-examination of cell-movement patterns. Curr Biol17:R561–R570
    [Google Scholar]
  19. Katzen F., Becker A., Ielmini M. V., Oddo C. G., Ielpi L.. 1999; New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3′ end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol65:278–282
    [Google Scholar]
  20. Kearns D. B., Losick R.. 2003; Swarming motility in undomesticated Bacillus subtilis . Mol Microbiol49:581–590
    [Google Scholar]
  21. Khater L., Alegria M. C., Borin P. F., Santos T. M., Docena C., Tasic L., Farah C. S., Ramos C. H.. 2007; Identification of the flagellar chaperone FlgN in the phytopathogen Xanthomonas axonopodis pathovar citri by its interaction with hook-associated FlgK. Arch Microbiol188:243–250
    [Google Scholar]
  22. Köhler T., Curty L. K., Barja F., van Delden C., Pechere J. C.. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol182:5990–5996
    [Google Scholar]
  23. Lee M. C., Weng S. F., Tseng Y. H.. 2003; Flagellin gene fliC of Xanthomonas campestris is upregulated by transcription factor Clp. Biochem Biophys Res Commun307:647–652
    [Google Scholar]
  24. Lemon K. P., Higgins D. E., Kolter R.. 2007; Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol189:4418–4424
    [Google Scholar]
  25. Mayfield C. I., Inniss W. E.. 1977; A rapid, simple method for staining bacterial flagella. Can J Microbiol23:1311–1313
    [Google Scholar]
  26. Merritt P. M., Danhorn T., Fuqua C.. 2007; Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol189:8005–8014
    [Google Scholar]
  27. Müller P., Keller M., Weng W. M., Quandt J., Arnold W., Puhler A.. 1993; Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein. Mol Plant–Microbe Interact6:55–65
    [Google Scholar]
  28. Murray T. S., Kazmierczak B. I.. 2006; FlhF is required for swimming and swarming in Pseudomonas aeruginosa . J Bacteriol188:6995–7004
    [Google Scholar]
  29. Murray T. S., Kazmierczak B. I.. 2008; Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol190:2700–2708
    [Google Scholar]
  30. O'Toole G. A., Kolter R.. 1998a; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304
    [Google Scholar]
  31. O'Toole G. A., Kolter R.. 1998b; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol28:449–461
    [Google Scholar]
  32. Overhage J., Lewenza S., Marr A. K., Hancock R. E.. 2007; Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol189:2164–2169
    [Google Scholar]
  33. Pratt L. A., Kolter R.. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol30:285–293
    [Google Scholar]
  34. Rashid M. H., Kornberg A.. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A97:4885–4890
    [Google Scholar]
  35. Rigano L. A., Payette C., Brouillard G., Marano M. R., Abramowicz L., Torres P. S., Yun M., Castagnaro A. P., Oirdi M. E.. other authors 2007a; Bacterial cyclic beta-(1,2)-glucan acts in systemic suppression of plant immune responses. Plant Cell19:2077–2089
    [Google Scholar]
  36. Rigano L. A., Siciliano F., Enrique R., Sendín L., Filippone P., Torres P. S., Qüesta J., Dow J. M., Castagnaro A. P.. other authors 2007b; Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant–Microbe Interact201222–1230
    [Google Scholar]
  37. Russo D. M., Williams A., Edwards A., Posadas D. M., Finnie C., Dankert M., Downie J. A., Zorreguieta A.. 2006; Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum . J Bacteriol188:4474–4486
    [Google Scholar]
  38. Sambrook J., Fritsch E., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Sherwood M. T.. 1970; Improved synthetic medium for the growth of Rhizobium . J Appl Bacteriol33:708–713
    [Google Scholar]
  40. Siciliano F., Torres P. S., Sendin L., Bermejo C., Filippone P., Vellice G., Ramallo J., Castagnaro A., Vojnov A., Marano M. R.. 2006; Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon . Electron J Biotechnol9:200–204
    [Google Scholar]
  41. Slater H., Alvarez-Morales A., Barber C. E., Daniels M. J., Dow J. M.. 2000; A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris . Mol Microbiol38:986–1003
    [Google Scholar]
  42. Southey-Pillig C. J., Davies D. G., Sauer K.. 2005; Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol187:8114–8126
    [Google Scholar]
  43. Stanley N. R., Lazazzera B. A.. 2004; Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol52:917–924
    [Google Scholar]
  44. Staskawicz B., Dahlbeck D., Keen N., Napoli C.. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea . J Bacteriol169:5789–5794
    [Google Scholar]
  45. Stoodley P., Sauer K., Davies D. G., Costerton J. W.. 2002; Biofilms as complex differentiated communities. Annu Rev Microbiol56:187–209
    [Google Scholar]
  46. Tans-Kersten J., Huang H., Allen C.. 2001; Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol183:3597–3605
    [Google Scholar]
  47. Tolker-Nielsen T., Brinch U. C., Ragas P. C., Andersen J. B., Jacobsen C. S., Molin S.. 2000; Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol182:6482–6489
    [Google Scholar]
  48. Torres P. S., Malamud F., Rigano L. A., Russo D. M., Marano M. R., Castagnaro A. P., Zorreguieta A., Bouarab K., Dow J. M., Vojnov A. A.. 2007; Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris . Environ Microbiol9:2101–2109
    [Google Scholar]
  49. Van Houdt R., Michiels C. W.. 2005; Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol156:626–633
    [Google Scholar]
  50. Vojnov A. A., Zorreguieta A., Dow J. M., Daniels M. J., Dankert M. A.. 1998; Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris . Microbiology144:1487–1493
    [Google Scholar]
  51. Vojnov A. A., Slater H., Daniels M. J., Dow J. M.. 2001; Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant–Microbe Interact14:768–774
    [Google Scholar]
  52. Vonderviszt F., Imada K., Furukawa Y., Uedaira H., Taniguchi H., Namba K.. 1998; Mechanism of self-association and filament capping by flagellar HAP2. J Mol Biol284:1399–1416
    [Google Scholar]
  53. Watnick P. I., Kolter R.. 1999; Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol34:586–595
    [Google Scholar]
  54. Young G. M., Smith M. J., Minnich S. A., Miller V. L.. 1999; The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol181:2823–2833
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044255-0
Loading
/content/journal/micro/10.1099/mic.0.044255-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error