1887

Abstract

We present the complete genomic sequence of , an organism suggested to be associated with the pathogenesis of rheumatoid arthritis in humans. The genome is composed of 977 524 bp and has a mean G+C content of 26.95 mol%. There are 835 predicted protein-coding sequences and a mean coding density of 87.6 %. Functions have been assigned to 58.8 % of the predicted protein-coding sequences, while 18.4 % of the proteins are conserved hypothetical proteins and 22.8 % are hypothetical proteins. In addition, there are two complete rRNA operons and 36 tRNA coding sequences. The largest gene families are the ABC transporter family (42 members), and the functionally heterogeneous group of lipoproteins (28 members), which encode the characteristic prokaryotic cysteine ‘lipobox’. Protein secretion occurs through a pathway consisting of SecA, SecD, SecE, SecG, SecY and YidC. Some highly conserved eubacterial proteins, such as GroEL and GroES, are notably absent. The genes encoding DnaK-DnaJ-GrpE and Tig, forming the putative complex of chaperones, are intact, providing the only known control over protein folding. Eighteen nucleases and 17 proteases and peptidases were detected as well as three genes for the thioredoxin-thioreductase system. Overall, this study presents insights into the physiology of , and provides several examples of the genetic basis of systems that might function as virulence factors in this organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043208-0
2011-03-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/760.html?itemId=/content/journal/micro/10.1099/mic.0.043208-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Ben-Menachem G., Himmelreich R., Herrmann R., Aharonowitz Y., Rottem S.. 1997; The thioredoxin reductase system of mycoplasmas. Microbiology143:1933–1940
    [Google Scholar]
  4. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  5. Brusilow W. S., Porter A. C., Simoni R. D.. 1983; Cloning and expression of uncI , the first gene of the unc operon of Escherichia coli . J Bacteriol155:1265–1270
    [Google Scholar]
  6. Calcutt M. J., Lavrrar J. L., Wise K. S.. 1999; IS 1630 of Mycoplasma fermentans , a novel IS 30 -type insertion element that targets and duplicates inverted repeats of variable length and sequence during insertion. J Bacteriol181:7597–7607
    [Google Scholar]
  7. Calcutt M. J., Lewis M. S., Wise K. S.. 2002; Molecular genetic analysis of ICEF, an integrative conjugal element that is present as a repetitive sequence in the chromosome of Mycoplasma fermentans PG18. J Bacteriol184:6929–6941
    [Google Scholar]
  8. Carver T., Berriman M., Tivey A., Patel C., Bohme U., Barrell B. G., Parkhill J., Rajandream M. A.. 2008; Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics24:2672–2676
    [Google Scholar]
  9. Chambaud I., Wroblewski H., Blanchard A.. 1999; Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol7:493–499
    [Google Scholar]
  10. Chambaud I., Heilig R., Ferris S., Barbe V., Samson D., Galisson F., Moszer I., Dybvig K., Wróblewski H..other authors 2001; The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis . Nucleic Acids Res29:2145–2153
    [Google Scholar]
  11. Chang L. J., Chen W. H., Minion F. C., Shiuan D.. 2008; Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE–HrcA interactions. Biochem Biophys Res Commun367:213–218
    [Google Scholar]
  12. Chopra-Dewasthaly R., Citti C., Glew M. D., Zimmermann M., Rosengarten R., Jechlinger W.. 2008; Phase-locked mutants of Mycoplasma agalactiae : defining the molecular switch of high-frequency Vpma antigenic variation. Mol Microbiol67:1196–1210
    [Google Scholar]
  13. Dandekar T., Huynen M., Regula J. T., Ueberle B., Zimmermann C. U., Andrade M. A., Doerks T., Sánchez-Pulido L., Snel B.. other authors 2000; Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res28:3278–3288
    [Google Scholar]
  14. Deutsch J., Salman M., Rottem S.. 1995; An unusual polar lipid from the cell membrane of Mycoplasma fermentans . Eur J Biochem227:897–902
    [Google Scholar]
  15. Dimitrov D. S., Franzoso G., Salman M., Blumenthal R., Tarshis M., Barile M. F., Rottem S.. 1993; Mycoplasma fermentans (incognitus strain) cells are able to fuse with T lymphocytes. Clin Infect Dis17:Suppl. 1S305–S308
    [Google Scholar]
  16. Donnan F. G.. 1911; Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Z Elektrochemie17:572–581
    [Google Scholar]
  17. Dybvig K., Zuhua C., Lao P., Jordan D. S., French C. T., Tu A. H., Loraine A. E.. 2008; Genome of Mycoplasma arthritidis . Infect Immun76:4000–4008
    [Google Scholar]
  18. Franzoso G., Dimitrov D. S., Blumenthal R., Barile M. F., Rottem S.. 1992; Fusion of Mycoplasma fermentans strain incognitus with T-lymphocytes. FEBS Lett303:251–254
    [Google Scholar]
  19. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G.. other authors 1995; The minimal gene complement of Mycoplasma genitalium . Science270:397–403
    [Google Scholar]
  20. Futai M., Noumi T., Maeda M.. 1989; ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem58:111–136
    [Google Scholar]
  21. Glass J. I., Lefkowitz E. J., Glass J. S., Heiner C. R., Chen E. Y., Cassell G. H.. 2000; The complete sequence of the mucosal pathogen Ureaplasma urealyticum . Nature407:757–762
    [Google Scholar]
  22. Glass J. I., Assad-Garcia N., Alperovich N., Yooseph S., Lewis M. R., Maruf M., Hutchison C. A. III, Smith H. O., Venter J. C.. 2006; Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A103:425–430
    [Google Scholar]
  23. Groth G.. 2000; Molecular models of the structural arrangement of subunits and the mechanism of proton translocation in the membrane domain of F1F0 ATP synthase. Biochim Biophys Acta 1458;417–427
    [Google Scholar]
  24. Haier J., Nasralla M., Franco A. R., Nicolson G. L.. 1999; Detection of mycoplasmal infections in blood of patients with rheumatoid arthritis. Rheumatology (Oxford38:504–509
    [Google Scholar]
  25. Hall R. E., Agarwal S., Kestler D. P., Cobb J. A., Goldstein K. M., Chang N. S.. 1996; cDNA and genomic cloning and expression of the P48 monocytic differentiation/activation factor, a Mycoplasma fermentans gene product. Biochem J319:919–927
    [Google Scholar]
  26. Hallamaa K. M., Browning G. F., Tang S. L.. 2006; Lipoprotein multigene families in Mycoplasma pneumoniae . J Bacteriol188:5393–5399
    [Google Scholar]
  27. Hansen F. G., Nielsen J., Riise E., von Meyenburg K.. 1981; The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coli . Mol Gen Genet183:463–472
    [Google Scholar]
  28. Hantke K., Braun V.. 1973; Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J Biochem34:284–296
    [Google Scholar]
  29. Hayflick L.. 1965; Tissue cultures and mycoplasmas. Tex Rep Biol Med23:Suppl. 1285
    [Google Scholar]
  30. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R.. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res24:4420–4449
    [Google Scholar]
  31. Holland I. B., Blight M. A.. 1999; ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol293:381–399
    [Google Scholar]
  32. Horino A., Kenri T., Sasaki Y., Okamura N., Sasaki T.. 2009; Identification of a site-specific tyrosine recombinase that mediates promoter inversions of phase-variable mpl lipoprotein genes in Mycoplasma penetrans . Microbiology155:1241–1249
    [Google Scholar]
  33. Horowitz S., Evinson B., Borer A., Horowitz J.. 2000; Mycoplasma fermentans in rheumatoid arthritis and other inflammatory arthritides. J Rheumatol27:2747–2753
    [Google Scholar]
  34. Hu W. S., Wang R. Y., Liou R. S., Shih J. W., Lo S. C.. 1990; Identification of an insertion-sequence-like genetic element in the newly recognized human pathogen Mycoplasma incognitus . Gene93:67–72
    [Google Scholar]
  35. Ishida N., Irikura D., Matsuda K., Sato S., Sone T., Tanaka M., Asano K.. 2009; Molecular cloning and expression of a novel cholinephosphotransferase involved in glycoglycerophospholipid biosynthesis of Mycoplasma fermentans . Curr Microbiol58:535–540
    [Google Scholar]
  36. Jaffe J. D., Stange-Thomann N., Smith C., DeCaprio D., Fisher S., Butler J., Calvo S., Elkins T., FitzGerald M. G.. other authors 2004; The complete genome and proteome of Mycoplasma mobile . Genome Res14:1447–1461
    [Google Scholar]
  37. Johnson S., Sidebottom D., Bruckner F., Collins D.. 2000; Identification of Mycoplasma fermentans in synovial fluid samples from arthritis patients with inflammatory disease. J Clin Microbiol38:90–93
    [Google Scholar]
  38. Junge W., Panke O., Cherepanov D. A., Gumbiowski K., Muller M., Engelbrecht S.. 2001; Inter-subunit rotation and elastic power transmission in F0F1-ATPase. FEBS Lett504:152–160
    [Google Scholar]
  39. Kawahito Y., Ichinose S., Sano H., Tsubouchi Y., Kohno M., Yoshikawa T., Tokunaga D., Hojo T., Harasawa R.. other authors 2008; Mycoplasma fermentans glycolipid-antigen as a pathogen of rheumatoid arthritis. Biochem Biophys Res Commun369:561–566
    [Google Scholar]
  40. Klein P., Somorjai R. L., Lau P. C.. 1988; Distinctive properties of signal sequences from bacterial lipoproteins. Protein Eng2:15–20
    [Google Scholar]
  41. Koonin E. V.. 2000; How many genes can make a cell: the minimal-gene-set concept. Annu Rev Genomics Hum Genet1:99–116
    [Google Scholar]
  42. Kuwahara T., Yamashita A., Hirakawa H., Nakayama H., Toh H., Okada N., Kuhara S., Hattori M., Hayashi T., Ohnishi Y.. 2004; Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A101:14919–14924
    [Google Scholar]
  43. Leigh S. A., Wise K. S.. 2002; Identification and functional mapping of the Mycoplasma fermentans P29 adhesin. Infect Immun70:4925–4935
    [Google Scholar]
  44. Lobry J. R.. 1996; Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol13:660–665
    [Google Scholar]
  45. Lysnyansky I., Calcutt M. J., Ben-Barak I., Ron Y., Levisohn S., Methe B. A., Yogev D.. 2009; Molecular characterization of newly identified IS 3 , IS 4 and IS 30 insertion sequence-like elements in Mycoplasma bovis and their possible roles in genome plasticity. FEMS Microbiol Lett294:172–182
    [Google Scholar]
  46. Mahillon J., Leonard C., Chandler M.. 1999; IS elements as constituents of bacterial genomes. Res Microbiol150:675–687
    [Google Scholar]
  47. Maniloff J.. 2002; Phylogeny and evolution. In Molecular Biology and Pathogenicity of Mycoplasmas pp31–43 Edited by Razin S., Herrmann R.. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  48. Matsuda K., Kasama T., Ishizuka I., Handa S., Yamamoto N., Taki T.. 1994; Structure of a novel phosphocholine-containing glycoglycerolipid from Mycoplasma fermentans . J Biol Chem269:33123–33128
    [Google Scholar]
  49. Minion F. C., Lefkowitz E. J., Madsen M. L., Cleary B. J., Swartzell S. M., Mahairas G. G.. 2004; The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J Bacteriol186:7123–7133
    [Google Scholar]
  50. Mühlradt P. F., Schade U.. 1991; MDHM, a macrophage-stimulatory product of Mycoplasma fermentans , leads to in vitro interleukin-1 (IL-1), IL-6, tumor necrosis factor, and prostaglandin production and is pyrogenic in rabbits. Infect Immun59:3969–3974
    [Google Scholar]
  51. Nouvel L. X., Sirand-Pugnet P., Marenda M. S., Sagné E., Barbe V., Mangenot S., Schenowitz C., Jacob D., Barré A..other authors 2010; Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. BMC Genomics11:86
    [Google Scholar]
  52. Okusawa T., Fujita M., Nakamura J., Into T., Yasuda M., Yoshimura A., Hara Y., Hasebe A., Golenbock D. T.. other authors 2004; Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by Toll-like receptors 2 and 6. Infect Immun72:1657–1665
    [Google Scholar]
  53. Olson L. D., Renshaw C. A., Rottem S., Boal J. H.. 1993; Arginine utilization by Mycoplasma fermentans is not regulated by glucose metabolism: a 13C-NMR study. FEMS Microbiol Lett108:47–52
    [Google Scholar]
  54. Overbeek R., Larsen N., Walunas T., D'Souza M., Pusch G., Selkov E. Jr, Liolios K., Joukov V., Kaznadzey D.. other authors 2003; The ERGO genome analysis and discovery system. Nucleic Acids Res31:164–171
    [Google Scholar]
  55. Papazisi L., Gorton T. S., Kutish G., Markham P. F., Browning G. F., Nguyen D. K., Swartzell S., Madan A., Mahairas G., Geary S. J.. 2003; The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R(low. Microbiology149:2307–2316
    [Google Scholar]
  56. Pereyre S., Sirand-Pugnet P., Beven L., Charron A., Renaudin H., Barré A., Avenaud P., Jacob D., Couloux A.. other authors 2009; Life on arginine for Mycoplasma hominis : clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Genet5:e1000677
    [Google Scholar]
  57. Pyrowolakis G., Hofmann D., Herrmann R.. 1998; The subunit b of the F0F1-type ATPase of the bacterium Mycoplasma pneumoniae is a lipoprotein. J Biol Chem273:24792–24796
    [Google Scholar]
  58. Raetz C. R., Dowhan W.. 1990; Biosynthesis and function of phospholipids in Escherichia coli . J Biol Chem265:1235–1238
    [Google Scholar]
  59. Rasmussen O. F., Shirvan M. H., Margalit H., Christiansen C., Rottem S.. 1992; Nucleotide sequence, organization and characterization of the atp genes and the encoded subunits of Mycoplasma gallisepticum ATPase. Biochem J285:881–888
    [Google Scholar]
  60. Razin S.. 1992; Peculiar properties of mycoplasmas: the smallest self-replicating prokaryotes. FEMS Microbiol Lett79:423–431
    [Google Scholar]
  61. Razin S., Yogev D., Naot Y.. 1998; Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev62:1094–1156
    [Google Scholar]
  62. Röske K., Calcutt M. J., Wise K. S.. 2004; The Mycoplasma fermentans prophage phiMFV1: genome organization, mobility and variable expression of an encoded surface protein. Mol Microbiol52:1703–1720
    [Google Scholar]
  63. Rottem S.. 1980; Membrane lipids of mycoplasmas. Biochim Biophys Acta604:65–90
    [Google Scholar]
  64. Rottem S.. 2003; Interaction of mycoplasmas with host cells. Physiol Rev83:417–432
    [Google Scholar]
  65. Rottem S., Naot Y.. 1998; Subversion and exploitation of host cells by mycoplasmas. Trends Microbiol6:436–440
    [Google Scholar]
  66. Ruiter M., Wentholt H. M.. 1952; The occurrence of a pleuropneumonia-like organism in fuso-spirillary infections of the human genital mucosa. J Invest Dermatol18:313–325
    [Google Scholar]
  67. Sasaki Y., Ishikawa J., Yamashita A., Oshima K., Kenri T., Furuya K., Yoshino C., Horino A., Shiba T.. other authors 2002; The complete genomic sequence of Mycoplasma penetrans , an intracellular bacterial pathogen in humans. Nucleic Acids Res30:5293–5300
    [Google Scholar]
  68. Schaeverbeke T., Gilroy C. B., Bebear C., Dehais J., Taylor-Robinson D.. 1996; Mycoplasma fermentans in joints of patients with rheumatoid arthritis and other joint disorders. Lancet347:1418
    [Google Scholar]
  69. Schaeverbeke T., Clerc M., Lequen L., Charron A., Bebear C., de Barbeyrac B., Bannwarth B., Dehais J.. 1998; Genotypic characterization of seven strains of Mycoplasma fermentans isolated from synovial fluids of patients with arthritis. J Clin Microbiol36:1226–1231
    [Google Scholar]
  70. Shirvan M. H., Rottem S.. 1993; Ion pumps and volume regulation in mycoplasma. Subcell Biochem20:261–292
    [Google Scholar]
  71. Sirand-Pugnet P., Lartigue C., Marenda M., Jacob D., Barré A., Barbe V., Schenowitz C., Mangenot S., Couloux A.. other authors 2007; Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet3:e75
    [Google Scholar]
  72. Sitaraman R., Denison A. M., Dybvig K.. 2002; A unique, bifunctional site-specific DNA recombinase from Mycoplasma pulmonis . Mol Microbiol46:1033–1040
    [Google Scholar]
  73. Staden R., Beal K. F., Bonfield J. K.. 2000; The Staden package, 1998. Methods Mol Biol132:115–130
    [Google Scholar]
  74. Tatusov R. L., Koonin E. V., Lipman D. J.. 1997; A genomic perspective on protein families. Science278:631–637
    [Google Scholar]
  75. Tech M., Merkl R.. 2003; YACOP: enhanced gene prediction obtained by a combination of existing methods. In Silico Biol3:441–451
    [Google Scholar]
  76. Theiss P., Karpas A., Wise K. S.. 1996; Antigenic topology of the P29 surface lipoprotein of Mycoplasma fermentans : differential display of epitopes results in high-frequency phase variation. Infect Immun64:1800–1809
    [Google Scholar]
  77. Thomas A., Linden A., Mainil J., Bischof D. F., Frey J., Vilei E. M.. 2005; Mycoplasma bovis shares insertion sequences with Mycoplasma agalactiae and Mycoplasma mycoides subsp. mycoides SC: evolutionary and developmental aspects. FEMS Microbiol Lett245:249–255
    [Google Scholar]
  78. Vasconcelos A. T., Ferreira H. B., Bizarro C. V., Bonatto S. L., Carvalho M. O., Pinto P. M., Almeida D. F., Almeida L. G., Almeida R.. other authors 2005; Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae . J Bacteriol187:5568–5577
    [Google Scholar]
  79. Westberg J., Persson A., Holmberg A., Goesmann A., Lundeberg J., Johansson K. E., Pettersson B., Uhlen M.. 2004; The genome sequence of Mycoplasma mycoides subsp. mycoides SC type strain PG1T, the causative agent of contagious bovine pleuropneumonia (CBPP. Genome Res14:221–227
    [Google Scholar]
  80. Williams M. H., Brostoff J., Roitt I. M.. 1970; Possible role of Mycoplasma fermentans in pathogenesis of rheumatoid arthritis. Lancet2:277–280
    [Google Scholar]
  81. Wise K. S.. 1993; Adaptive surface variation in mycoplasmas. Trends Microbiol1:59–63
    [Google Scholar]
  82. Wise K. S., Kim M. F., Theiss P. M., Lo S. C.. 1993; A family of strain-variant surface lipoproteins of Mycoplasma fermentans . Infect Immun61:3327–3333
    [Google Scholar]
  83. Yavlovich A., Katzenell A., Tarshis M., Higazi A. A., Rottem S.. 2004; Mycoplasma fermentans binds to and invades HeLa cells: involvement of plasminogen and urokinase. Infect Immun72:5004–5011
    [Google Scholar]
  84. Zähringer U., Wagner F., Rietschel E. T., Ben-Menachem G., Deutsch J., Rottem S.. 1997; Primary structure of a new phosphocholine-containing glycoglycerolipid of Mycoplasma fermentans . J Biol Chem272:26262–26270
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043208-0
Loading
/content/journal/micro/10.1099/mic.0.043208-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error