1887

Abstract

is the most frequently isolated pathogen in Gram-positive sepsis often complicated by a blood clotting disorder, and is the leading cause of infective endocarditis induced by bacterial destruction of endocardial tissues. The bacterium secretes cysteine proteases referred to as staphopain A (ScpA) and staphopain B (SspB). To investigate virulence activities of staphopains pertinent to clotting disorders and tissue destruction, we examined their effects on collagen, one of the major tissue components, and on plasma clotting. Both staphopains prolonged the partial thromboplastin time of plasma in a dose- and activity-dependent manner, with SspB being threefold more potent than ScpA. Staphopains also prolonged the thrombin time of both plasma and fibrinogen, indicating that these enzymes can cause impaired plasma clotting through fibrinogen degradation. Whereas SspB cleaved the fibrinogen A-chain at the C-terminal region very efficiently, ScpA degraded it rather slowly. This explains the superior ability of the former enzyme to impair fibrinogen clottability. Enzymically active staphopains, at concentrations as low as 10 nM, degraded collagen with comparable efficiency. These results show novel virulence activities of staphopains in degrading fibrinogen and collagen, and suggest an involvement of staphopains in the clotting impairment and tissue destruction caused by staphylococcal infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044503-0
2011-03-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/786.html?itemId=/content/journal/micro/10.1099/mic.0.044503-0&mimeType=html&fmt=ahah

References

  1. Ahmed, A. J., Kruse, J. A., Haupt, M. T., Chandrasekar, P. H. & Carlson, R. W. ( 1991; ). Hemodynamic responses to Gram-positive versus Gram-negative sepsis in critically ill patients with and without circulatory shock. Crit Care Med 19, 1520–1525.[CrossRef]
    [Google Scholar]
  2. Blombäck, B. ( 1986; ). Specificity of thrombin and its action on fibrinogen. Ann N Y Acad Sci 485, 120–123.[CrossRef]
    [Google Scholar]
  3. Bokarewa, M. I., Jin, T. & Tarkowski, A. ( 2006; ). Staphylococcus aureus: staphylokinase. Int J Biochem Cell Biol 38, 504–509.[CrossRef]
    [Google Scholar]
  4. Bone, R. C. ( 1993; ). How Gram-positive organisms cause sepsis. J Crit Care 8, 51–59.[CrossRef]
    [Google Scholar]
  5. Buxton, T. B., Rissing, J. P., Horner, J. A., Plowman, K. M., Scott, D. F., Sprinkle, T. J. & Best, G. K. ( 1990; ). Binding of a Staphylococcus aureus bone pathogen to type I collagen. Microb Pathog 8, 441–448.[CrossRef]
    [Google Scholar]
  6. ChandraRajan, J. ( 1978; ). Separation of type III collagen from type I and pepsin by differential denaturation and renaturation. Biochem Biophys Res Commun 83, 180–186.[CrossRef]
    [Google Scholar]
  7. Chang, F.-Y., MacDonald, B. B., Peacock, J. E., Jr, Musher, D. M., Triplett, P., Maylott, J. M., O'Donnell, A., Wagener, M. M. & Yu, V. L. ( 2003; ). A prospective multicenter study of Staphylococcus aureus bacteremia: incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine 82, 322–332.[CrossRef]
    [Google Scholar]
  8. Cheung, A. L., Krishnan, M., Jaffe, E. A. & Fischetti, V. A. ( 1991; ). Fibrinogen acts as a bridging molecule in the adherence of Staphylococcus aureus to cultured human endothelial cells. J Clin Invest 87, 2236–2245.[CrossRef]
    [Google Scholar]
  9. Doolittle, R. F. ( 2003; ). X-ray crystallographic studies on fibrinogen and fibrin. J Thromb Haemost 1, 1559–1565.[CrossRef]
    [Google Scholar]
  10. Fowler, V. G., Miro, J. M., Hoen, B., Cabell, C. H., Abrutyn, E., Rubinstein, E., Corey, G. R., Spelman, D., Bradley, S. F. & other authors ( 2005; ). Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 293, 3012–3021.[CrossRef]
    [Google Scholar]
  11. Halkier, T. ( 1991; ). Mechanisms in Blood Coagulation, Fibrinolysis and the Complement System. Cambridge, UK. : Cambridge University Press.
    [Google Scholar]
  12. Henschen, A. ( 1983; ). On the structure of functional sites in fibrinogen. Thromb Res (Suppl. 5), 27–39.
    [Google Scholar]
  13. Hienz, S. A., Schennings, T., Heimdahl, A. & Flock, J.-I. ( 1996; ). Collagen binding of Staphylococcus aureus is a virulence factor in experimental endocarditis. J Infect Dis 174, 83–88.[CrossRef]
    [Google Scholar]
  14. Holderbaum, D., Spech, T., Ehrhart, L. A., Keys, T. & Hall, T. S. ( 1987; ). Collagen binding in clinical isolates of Staphylococcus aureus. J Clin Microbiol 25, 2258–2261.
    [Google Scholar]
  15. Imamura, T., Potempa, J., Pike, R. N., Moore, J. N., Barton, M. H. & Travis, J. ( 1995; ). Effect of free and vesicle-bound cysteine proteinases of Porphyromonas gingivalis on plasma clot formation: implications for bleeding tendency at periodontitis sites. Infect Immun 63, 4877–4882.
    [Google Scholar]
  16. Imamura, T., Potempa, J., Tanase, S. & Travis, J. ( 1997; ). Activation of blood coagulation factor X by arginine-specific cysteine proteinases (gingipain-Rs) from Porphyromonas gingivalis. J Biol Chem 272, 16062–16067.[CrossRef]
    [Google Scholar]
  17. Imamura, T., Potempa, J. & Travis, J. ( 2000; ). Pathogenic properties between two types of arginine-specific cysteine proteinases (gingipains-R) from Prophyromonas gingivalis. Microb Pathog 29, 155–163.[CrossRef]
    [Google Scholar]
  18. Imamura, T., Tanase, S., Szmyd, G., Kozik, A., Travis, J. & Potempa, J. ( 2005; ). Induction of vascular leakage through bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. J Exp Med 201, 1669–1676.[CrossRef]
    [Google Scholar]
  19. Imamura, T., Nitta, H., Wada, Y., Kobayashi, H. & Okamoto, K. ( 2008; ). Impaired plasma clottability induction through fibrinogen degradation by ASP, a serine protease released from Aeromonas sobria. FEMS Microbiol Lett 284, 35–42.[CrossRef]
    [Google Scholar]
  20. Kieft, H., Hoepelman, A. I. M., Zhou, W., Rozenberg-Arska, M., Stryyvenberg, A. & Verhoef, J. ( 1993; ). The sepsis syndrome in a Dutch university hospital. Clinical observations. Arch Intern Med 153, 2241–2247.[CrossRef]
    [Google Scholar]
  21. Levi, M. & ten Cate, H. ( 1999; ). Disseminated intravascular coagulation. N Engl J Med 341, 586–592.[CrossRef]
    [Google Scholar]
  22. Malani, P. N., Rana, M. M., Banerjee, M. & Bradley, S. F. ( 2008; ). The Staphylococcus aureus bloodstream infections: the association between age and mortality and functional status. J Am Geriatr Soc 56, 1485–1489.[CrossRef]
    [Google Scholar]
  23. Massimi, I., Park, E., Rice, K., Müller-Esterl, W., Sauder, D. & McGavin, M. J. ( 2002; ). Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem 277, 41770–41777.[CrossRef]
    [Google Scholar]
  24. McDevitt, D., Nanavaty, T., House-Pompeo, K., Bell, E., Turner, N., McIntire, L., Foster, T. & Höök, M. ( 1997; ). Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur J Biochem 247, 416–424.[CrossRef]
    [Google Scholar]
  25. McGavin, M. H., Krajewska-Pietrasik, D., Rydén, C. & Höök, M. ( 1993; ). Identification of a Staphylococcus extracellular matrix-binding protein with broad specificity. Infect Immun 61, 2479–2485.
    [Google Scholar]
  26. Naidu, A. S., Ekstrand, J. & Wadström, T. ( 1989; ). Binding of type I and type II collagens to Staphylococcus aureus strains isolated from patients with toxic shock syndrome compared to other staphylococcal infections. FEMS Microbiol Immunol 1, 219–227.
    [Google Scholar]
  27. Nitta, H., Kobayashi, H., Irie, A., Baba, H., Okamoto, K. & Imamura, T. ( 2007; ). Activation of prothrombin by ASP, a serine protease released from Aeromonas sobria. FEBS Lett 581, 5935–5939.[CrossRef]
    [Google Scholar]
  28. Parsonnet, J. & Deresiewicz, R. L. ( 2001; ). Staphylococcal infections. In Harrison's Principles of Internal Medicine, 15th edn, pp. 889–901. Edited by Braunwald, E., Fauci, A. S., Kasper, D. L., Hauser, S. L., Longo, D. L. & Jameson, J. L.. New York. : McGraw-Hill.
    [Google Scholar]
  29. Potempa, J. & Pike, R. N. ( 2009; ). Corruption of innate immunity by bacterial proteases. J Innate Immun 1, 70–87.[CrossRef]
    [Google Scholar]
  30. Potempa, J., Dubin, A., Korzus, G. & Travis, J. ( 1988; ). Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J Biol Chem 263, 2664–2667.
    [Google Scholar]
  31. Que, Y. A., Haefliger, J.-A., Piroth, L., François, P., Widmer, E., Entenza, J. M., Sinha, B., Herrmann, M., Francioli, P. & other authors ( 2005; ). Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 201, 1627–1635.[CrossRef]
    [Google Scholar]
  32. Rzychon, M., Sabat, A., Kosowska, K., Potempa, J. & Dubin, A. ( 2003; ). Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains, Staphylococcus spp. cysteine proteinases. Mol Microbiol 49, 1051–1066.[CrossRef]
    [Google Scholar]
  33. Silence, K., Collen, D. & Lijnen, H. R. ( 1993; ). Interaction between staphylokinase, plasmin(ogen), and α 2-antiplasmin. Recycling of staphylokinase after neutralization of the plasmin–staphylokinase complex by α 2-antiplasmin. J Biol Chem 268, 9811–9816.
    [Google Scholar]
  34. Smagur, J., Guzik, K., Bzowska, M., Kuzak, M., Zarebski, M., Kantyka, T., Walski, M., Gajkowska, G. & Potempa, J. ( 2009; ). Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 390, 361–371.
    [Google Scholar]
  35. Speziale, P., Raucci, G., Visai, L., Switalski, L., Timpl, R. & Höök, M. ( 1986; ). Binding of collagen to Staphylococcus aureus Cowan 1. J Bacteriol 167, 77–81.
    [Google Scholar]
  36. Switalski, L. M., Speziale, P. & Höök, M. ( 1989; ). Isolation and characterization of a putative collagen receptor from Staphylococcus aureus strain Cowan 1. J Biol Chem 264, 21080–21086.
    [Google Scholar]
  37. Veklich, Y. I., Gorkun, O. V., Medved, L. V., Nieuwenhuizen, W. & Weisel, J. W. ( 1993; ). Carboxy-terminal portions of the α chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated αC fragments on polymerization. J Biol Chem 268, 13577–13585.
    [Google Scholar]
  38. Vincents, B., Önnerfjord, P., Gruca, M., Potempa, J. & Abrahamson, M. ( 2007; ). Down-regulation of human extracellular cysteine protease inhibitors by the secreted staphylococcal cysteine proteases, staphopain A and B. Biol Chem 388, 437–446.
    [Google Scholar]
  39. Wann, E. R., Gurusiddappa, S. & Höök, M. ( 2000; ). The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275, 13863–13871.[CrossRef]
    [Google Scholar]
  40. Watt, K. W. K., Cottrell, B. A. & Doolittle, R. F. ( 1979; ). Amino acid sequence studies on the α chain of human fibrinogen. Overlapping sequences providing the complete sequence. Biochemistry 18, 5410–5416.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044503-0
Loading
/content/journal/micro/10.1099/mic.0.044503-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error