1887

Abstract

SEMIA587 is a symbiotic nitrogen-fixing bacterium of the group commonly called rhizobia, which induce nodule formation in legumes, and is widely used in Brazilian commercial inoculants of soybean. In response to flavonoid compounds released by plant roots, besides Nod factors, other molecular signals are secreted by rhizobia, such as proteins secreted by type III secretion systems (T3SSs). Rhizobial T3SSs are activated by the transcription regulator TtsI, which binds to sequences present in the promoter regions of T3SS genes via a conserved sequence called the box. To study the role of the T3SS of SEMIA587, was mutated. Protein secretion and flavonoid induction analysis, as well as nodulation tests, were performed with the wild-type and mutant strains. The results obtained showed that SEMIA587 secretes at least two proteins (NopA and NopL, known rhizobial T3SS substrates) after genistein induction, whilst supernatants of the mutant did not contain these Nops. Unusually for rhizobia, the promoter region of the SEMIA587 gene contains a box, which is responsive to flavonoid induction and to which TtsI can bind. Nodulation tests performed with three different leguminous plants showed that the SEMIA587 mutant displays host-dependent characteristics; in particular, nodulation of two soybean cultivars, Peking and EMBRAPA 48, was more efficient when TtsI of was functional.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040873-0
2011-03-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/627.html?itemId=/content/journal/micro/10.1099/mic.0.040873-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1994; ). Current Protocols in Molecular Biology. New York. : Wiley.
    [Google Scholar]
  2. Bartsev, A. V., Boukli, N. M., Deakin, W. J., Staehelin, C. & Broughton, W. J. ( 2003; ). Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett 554, 271–274.[CrossRef]
    [Google Scholar]
  3. Bartsev, A. V., Deakin, W. J., Boukli, N. M., McAlvin, C. B., Stacey, G., Malnoe, P., Broughton, W. J. & Staehelin, C. ( 2004; ). NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defence reactions. Plant Physiol 134, 871–879.[CrossRef]
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  5. Broughton, W. J., Wong, C. H., Lewin, A., Samrey, U., Myint, H., Meyer, Z. A. H., Dowling, D. N. & Simon, R. ( 1986; ). Identification of Rhizobium plasmid sequences involved in recognition of Psophocarpus, Vigna, and other legumes. J Cell Biol 102, 1173–1182.[CrossRef]
    [Google Scholar]
  6. Deakin, W. J. & Broughton, W. J. ( 2009; ). Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7, 312–320.
    [Google Scholar]
  7. Ferreira, M. C., Andrade, D. S., Chueire, L. M. O., Takemura, S. M. & Hungria, M. ( 2000; ). Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32, 627–637.[CrossRef]
    [Google Scholar]
  8. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  9. Freiberg, C., Fellay, R., Bairoch, A., Broughton, W. J., Rosenthal, A. & Perret, X. ( 1997; ). Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394–401.[CrossRef]
    [Google Scholar]
  10. Hueck, C. J. ( 1998; ). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379–433.
    [Google Scholar]
  11. Kobayashi, H., Graven, Y. N., Broughton, W. J. & Perret, X. ( 2004; ). Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51, 335–347.[CrossRef]
    [Google Scholar]
  12. Krause, A., Doerfel, A. & Göttfert, M. ( 2002; ). Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15, 1228–1235.[CrossRef]
    [Google Scholar]
  13. Krishnan, H. B., Kim, W. S. & Sun-Hyung, J. ( 2007; ). Calcium regulates the production of nodulation outer proteins (Nops) and precludes pili formation by Sinorhizobium fredii USDA257, a soybean symbiont. FEMS Microbiol Lett 271, 59–64.[CrossRef]
    [Google Scholar]
  14. Lan, C.-Y. & Igo, M. M. ( 1998; ). Differential expression of the OmpF and OmpC porin proteins in Escherichia coli K-12 depends upon the level of active OmpR. J Bacteriol 180, 171–174.
    [Google Scholar]
  15. López-Baena, F. J., Vinardell, J. M., Pérez-Montano, F., Crespo-Rivas, J. C., Bellogín, R. A., Espuny, M. R. & Ollero, F. J. ( 2008; ). Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 154, 1825–1836.[CrossRef]
    [Google Scholar]
  16. Marie, C., Broughton, W. J. & Deakin, W. J. ( 2001; ). Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4, 336–342.[CrossRef]
    [Google Scholar]
  17. Marie, C., Deakin, W. J., Viprey, V., Kopcinska, J., Golinowski, W., Krishnan, H. B., Perret, X. & Broughton, W. J. ( 2003; ). Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact 16, 743–751.[CrossRef]
    [Google Scholar]
  18. Marie, C., Deakin, W. J., Ojanen-Reuhs, T., Diallo, E., Reuhs, B., Broughton, W. J. & Perret, X. ( 2004; ). TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17, 958–966.[CrossRef]
    [Google Scholar]
  19. Meinhardt, L. W., Krishnan, H. B., Ballati, P. A. & Pueppke, S. G. ( 1993; ). Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol Microbiol 9, 17–29.[CrossRef]
    [Google Scholar]
  20. Miller, W. G., Leveau, J. H. J. & Lindow, S. E. ( 2000; ). Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13, 1243–1250.[CrossRef]
    [Google Scholar]
  21. Okazaki, S., Zehner, S., Hempel, J., Lang, K. & Gottfert, M. ( 2009; ). Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 295, 88–95.[CrossRef]
    [Google Scholar]
  22. Pallen, M. J., Chaudhuri, R. R. & Henderson, I. R. ( 2003; ). Genomic analysis of secretion systems. Curr Opin Microbiol 6, 519–527.[CrossRef]
    [Google Scholar]
  23. Pueppke, S. G. & Broughton, W. J. ( 1999; ). Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12, 293–318.[CrossRef]
    [Google Scholar]
  24. Prentki, P. & Kirsch, H. M. ( 1984; ). In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313.[CrossRef]
    [Google Scholar]
  25. Rumjanek, N. G., Dobert, R. C., van Berkum, P. & Triplett, E. W. ( 1993; ). Common soybean inoculant strains in Brazil are members of Bradyrhizobium elkanii. Appl Environ Microbiol 59, 4371–4373.
    [Google Scholar]
  26. Sadowsky, M. J., Tully, R. E., Cregan, P. B. & Keyser, H. H. ( 1987; ). Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl Environ Microbiol 53, 2624–2630.
    [Google Scholar]
  27. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  28. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multipurpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  29. Skorpil, P., Saad, M. M., Boukli, N. M., Kobayashi, H., Ares-Orpel, F., Broughton, W. J. & Deakin, W. J. ( 2005; ). NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57, 1304–1317.[CrossRef]
    [Google Scholar]
  30. Tan, G., Gao, Y., Shi, M., Zhang, X., He, S., Chen, Z. & An, C. ( 2005; ). SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res 33, e122.[CrossRef]
    [Google Scholar]
  31. Vincent, J. M. ( 1970; ). A Manual for the Practical Study of Root Nodule Bacteria. Oxford. : Blackwell Scientific.
    [Google Scholar]
  32. Viprey, V., Del Greco, A., Golinowski, W., Broughton, W. J. & Perret, X. ( 1998; ). Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28, 1381–1389.[CrossRef]
    [Google Scholar]
  33. Wassem, R., Kobayashi, H., Kambara, K., Le Quéré, A., Walker, G. C., Broughton, W. J. & Deakin, W. J. ( 2008; ). TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 68, 736–748.[CrossRef]
    [Google Scholar]
  34. Zehner, S., Schober, G., Wenzel, M., Lang, K. & Gottfert, M. ( 2008; ). Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol Plant Microbe Interact 21, 1087–1093.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040873-0
Loading
/content/journal/micro/10.1099/mic.0.040873-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error