1887

Abstract

Here, we transcriptionally and phenotypically characterized the gene from . Northern blot analysis identified a monocistronic mRNA strongly induced at 48 and 50 °C. analysis identified that the gene encodes a protein of 868 aa with a predicted molecular mass of approximately 98 kDa, presenting two conserved ATP-binding domains. Sequence analysis also identified a CtsR-binding box upstream of the putative −10 sequence, and inactivation of the gene resulted in an approximately 2-log increase in mRNA expression, confirming ClpB as a member of the CtsR regulon. While expression of was induced by heat stress, a Δ strain grew relatively well under many different stressful conditions, including elevated temperatures. However, expression of ClpB appears to play a major role in induced thermotolerance and in pathogenesis, as assessed by using the virulence model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041897-0
2011-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/656.html?itemId=/content/journal/micro/10.1099/mic.0.041897-0&mimeType=html&fmt=ahah

References

  1. Abranches, J., Candella, M. M., Wen, Z. T., Baker, H. V. & Burne, R. A. ( 2006; ). Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 188, 3748–3756.[CrossRef]
    [Google Scholar]
  2. Ahn, S. J., Lemos, J. A. & Burne, R. A. ( 2005; ). Role of HtrA in growth and competence of Streptococcus mutans UA159. J Bacteriol 187, 3028–3038.[CrossRef]
    [Google Scholar]
  3. Bergin, D., Reeves, E. P., Renwick, J., Wientjes, F. B. & Kavanagh, K. ( 2005; ). Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73, 4161–4170.[CrossRef]
    [Google Scholar]
  4. Bryan, E. M., Bae, T., Kleerebezem, M. & Dunny, G. M. ( 2000; ). Improved vectors for nisin-controlled expression in Gram-positive bacteria. Plasmid 44, 183–190.[CrossRef]
    [Google Scholar]
  5. Capestany, C. A., Tribble, G. D., Maeda, K., Demuth, D. R. & Lamont, R. J. ( 2008; ). Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J Bacteriol 190, 1436–1446.[CrossRef]
    [Google Scholar]
  6. Chastanet, A. & Msadek, T. ( 2003; ). clpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in Gram-positive bacteria. J Bacteriol 185, 683–687.[CrossRef]
    [Google Scholar]
  7. Chastanet, A., Prudhomme, M., Claverys, J. P. & Msadek, T. ( 2001; ). Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol 183, 7295–7307.[CrossRef]
    [Google Scholar]
  8. Chastanet, A., Fert, J. & Msadek, T. ( 2003; ). Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol Microbiol 47, 1061–1073.[CrossRef]
    [Google Scholar]
  9. Chastanet, A., Derre, I., Nair, S. & Msadek, T. ( 2004; ). clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol 186, 1165–1174.[CrossRef]
    [Google Scholar]
  10. Clarke, A. K. & Eriksson, M. J. ( 2000; ). The truncated form of the bacterial heat shock protein ClpB/HSP100 contributes to development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 182, 7092–7096.[CrossRef]
    [Google Scholar]
  11. Derré, I., Rapoport, G. & Msadek, T. ( 1999; ). CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31, 117–131.[CrossRef]
    [Google Scholar]
  12. Doyle, S. M., Hoskins, J. R. & Wickner, S. ( 2007; ). Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci U S A 104, 11138–11144.[CrossRef]
    [Google Scholar]
  13. Eriksson, M. J. & Clarke, A. K. ( 1996; ). The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 178, 4839–4846.
    [Google Scholar]
  14. Eriksson, M. J. & Clarke, A. K. ( 2000; ). The Escherichia coli heat shock protein ClpB restores acquired thermotolerance to a cyanobacterial clpB deletion mutant. Cell Stress Chaperones 5, 255–264.[CrossRef]
    [Google Scholar]
  15. Fisher, K. & Phillips, C. ( 2009; ). In vitro inhibition of vancomycin-susceptible and vancomycin-resistant Enterococcus faecium and E. faecalis in the presence of citrus essential oils. Br J Biomed Sci 66, 180–185.
    [Google Scholar]
  16. Flahaut, S., Benachour, A., Giard, J. C., Boutibonnes, P. & Auffray, Y. ( 1996a; ). Defense against lethal treatments and protein synthesis induced by NaCl in Enterococcus faecalis ATCC 19433. Arch Microbiol 165, 317–324.[CrossRef]
    [Google Scholar]
  17. Flahaut, S., Hartke, A., Giard, J. C., Benachour, A., Boutibonnes, P. & Auffray, Y. ( 1996b; ). Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett 138, 49–54.[CrossRef]
    [Google Scholar]
  18. Flahaut, S., Hartke, A., Giard, J. C. & Auffray, Y. ( 1997; ). Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63, 812–814.
    [Google Scholar]
  19. Frees, D., Chastanet, A., Qazi, S., Sorensen, K., Hill, P., Msadek, T. & Ingmer, H. ( 2004; ). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54, 1445–1462.[CrossRef]
    [Google Scholar]
  20. Giard, J. C., Hartke, A., Flahaut, S., Benachour, A., Boutibonnes, P. & Auffray, Y. ( 1997; ). Glucose starvation response in Enterococcus faecalis JH2-2, survival and proteins analysis. Res Microbiol 148, 27–35.[CrossRef]
    [Google Scholar]
  21. Giard, J. C., Rince, A., Capiaux, H., Auffray, Y. & Hartke, A. ( 2000; ). Inactivation of the stress- and starvation-inducible gls24 operon has a pleiotropic effect on cell morphology, stress sensitivity and gene expression in Enterococcus faecalis. J Bacteriol 182, 4512–4520.[CrossRef]
    [Google Scholar]
  22. Grant, S. G., Jessee, J., Bloom, F. R. & Hanahan, D. ( 1990; ). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87, 4645–4649.[CrossRef]
    [Google Scholar]
  23. Hartke, A., Giard, J. C., Laplace, J. M. & Auffray, Y. ( 1998; ). Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl Environ Microbiol 64, 4238–4245.
    [Google Scholar]
  24. Houry, W. A. ( 2001; ). Chaperone-assisted protein folding in the cell cytoplasm. Curr Protein Pept Sci 2, 227–244.[CrossRef]
    [Google Scholar]
  25. Kristich, C. J., Chandler, J. R. & Dunny, G. M. ( 2007; ). Development of a host-genotype-independent counterselectable marker and high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid 57, 131–144.[CrossRef]
    [Google Scholar]
  26. Laport, M. S., Castro, A. C., Villardo, A., Lemos, J. A., Bastos, M. C. F. & Giambiagi-deMarval, M. ( 2001; ). Expression of the major heat shock proteins DnaK and GroEL in Streptococcus pyogenes: a comparison to Enterococcus faecalis and Staphylococcus aureus. Curr Microbiol 42, 264–268.
    [Google Scholar]
  27. Laport, M. S., Lemos, J. A., Bastos, M. C. F., Burne, R. A. & Giambiagi-deMarval, M. ( 2004; ). Transcriptional analysis of the groE and dnaK heat-shock operons of Enterococcus faecalis. Res Microbiol 155, 252–258.[CrossRef]
    [Google Scholar]
  28. Laport, M. S., Santos, L. L., Lemos, J. A. C., Bastos, M. C. F., Burne, R. A. & Giambiagi-deMarval, M. ( 2006; ). Organization of the heat-shock dnaK and groE operons of the nosocomial pathogen Enterococcus faecium. Res Microbiol 157, 162–168.[CrossRef]
    [Google Scholar]
  29. Lebreton, F., Riboulet-Bisson, E., Serror, P., Sanguinetti, M., Posteraro, B., Torelli, R., Hartke, A., Auffray, Y. & Giard, J.-C. ( 2009; ). ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 77, 2832–2839.[CrossRef]
    [Google Scholar]
  30. Leenhouts, K., Buist, G., Bolhuis, A., ten Berge, A., Kiel, J., Mierau, I., Dabrowska, M., Venema, G. & Kok, J. ( 1996; ). A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253, 217–224.[CrossRef]
    [Google Scholar]
  31. Lemos, J. A. C. & Burne, R. A. ( 2002; ). Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol 184, 6357–6366.[CrossRef]
    [Google Scholar]
  32. Loo, C. Y., Corliss, D. A. & Ganeshkumar, N. ( 2000; ). Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182, 1374–1382.[CrossRef]
    [Google Scholar]
  33. Murray, B. E. ( 1990; ). The life and times of the Enterococcus. Clin Microbiol Rev 3, 46–65.
    [Google Scholar]
  34. Narberhaus, F. ( 1999; ). Negative regulation of bacterial heat shock genes. Mol Microbiol 31, 1–8.[CrossRef]
    [Google Scholar]
  35. Park, S. K., Kim, K. I., Woo, K. M., Seol, J. H., Tanaka, K., Ichihara, A., Ha, D. B. & Chung, C. H. ( 1993; ). Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of Escherichia coli and characterization of its gene products. J Biol Chem 268, 20170–20174.
    [Google Scholar]
  36. Park, S. Y., Kim, K. M., Lee, J. H., Seo, S. J. & Lee, I. H. ( 2007; ). Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun 75, 1861–1869.[CrossRef]
    [Google Scholar]
  37. Paulsen, I. T., Banerjei, L., Myers, G. S., Nelson, K. E., Seshadri, R., Read, T. D., Fouts, D. E., Eisen, J. A., Gill, S. R. & other authors ( 2003; ). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299, 2071–2074.[CrossRef]
    [Google Scholar]
  38. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  39. Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. ( 1996; ). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21, 289–296.[CrossRef]
    [Google Scholar]
  40. Thomas, J. G. & Baneyx, F. ( 1998; ). Roles of the Escherichia coli small heat shock proteins ibpA and ibpB in thermal stress management: comparison with ClpA, ClpB and HtpG in vivo. J Bacteriol 180, 5165–5172.
    [Google Scholar]
  41. Wawrzynow, A., Banecki, B. & Zylicz, M. ( 1996; ). The Clp ATPases define a novel class of molecular chaperones. Mol Microbiol 21, 895–899.[CrossRef]
    [Google Scholar]
  42. Yuan, L., Rodrigues, P. H., Belanger, M., Dunn, J. R. W. & Progulske-Fox, A. ( 2007; ). The Porphyromonas gingivalis clpB gene is involved in cellular invasion in vitro and virulence in vivo. FEMS Immunol Med Microbiol 51, 388–398.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041897-0
Loading
/content/journal/micro/10.1099/mic.0.041897-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error