1887

Abstract

genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δ strain AAEC185 to test the assembled surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of . One locus, , was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate biofilm formation. When each chaperone/usher locus was deleted in , only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system as well as in mouse tissues following intravenous infection. However, a mutant in the chaperone/usher locus was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, , was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044826-0
2011-03-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/805.html?itemId=/content/journal/micro/10.1099/mic.0.044826-0&mimeType=html&fmt=ahah

References

  1. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. & Carniel, E. ( 1999; ). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048.[CrossRef]
    [Google Scholar]
  2. Alteri, C. J. & Mobley, H. L. ( 2007; ). Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75, 2679–2688.[CrossRef]
    [Google Scholar]
  3. Anderson, G. W. J., Leary, S. E., Williamson, E. D., Titball, R. W., Welkos, S. L., Worsham, P. L. & Friedlander, A. M. ( 1996; ). Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infect Immun 64, 4580–4585.
    [Google Scholar]
  4. Barnhart, M. M. & Chapman, M. R. ( 2006; ). Curli biogenesis and function. Annu Rev Microbiol 60, 131–147.[CrossRef]
    [Google Scholar]
  5. Barnhart, M. M., Pinkner, J. S., Soto, G. E., Sauer, F. G., Langermann, S., Waksman, G., Frieden, C. & Hultgren, S. J. ( 2000; ). PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci U S A 97, 7709–7714.[CrossRef]
    [Google Scholar]
  6. Beesley, E. D., Brubaker, R. R., Janssen, W. A. & Surgalla, M. J. ( 1967; ). Pesticins III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94, 19–26.
    [Google Scholar]
  7. Ben-Efraim, S., Aronson, M. & Bichowsky-Slomnicki, L. ( 1961; ). New antigenic component of Pasteurella pestis formed under specified conditions of pH and temperature. J Bacteriol 81, 704–714.
    [Google Scholar]
  8. Bichowsky-Slomnicki, L. & Ben-Efraim, S. ( 1963; ). Biological activities in extracts of Pasteurella pestis and their relation to the “pH 6 antigen”. J Bacteriol 86, 101–111.
    [Google Scholar]
  9. Bliska, J. B., Copass, M. C. & Falkow, S. ( 1993; ). The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect Immun 61, 3914–3921.
    [Google Scholar]
  10. Bobrov, A. G., Kirillina, O., Forman, S., Mack, D. & Perry, R. D. ( 2008; ). Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol 10, 1419–1432.[CrossRef]
    [Google Scholar]
  11. Buchrieser, C., Rusniok, C., Frangeul, L., Couve, E., Billault, A., Kunst, F., Carniel, E. & Glaser, P. ( 1999; ). The 102-Kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun 67, 4851–4861.
    [Google Scholar]
  12. Cantor, N. ( 2001; ). In the Wake of the Plague. New York. : Perennial.
    [Google Scholar]
  13. Cathelyn, J. S., Crosby, S. D., Lathem, W. W., Goldman, W. E. & Miller, V. L. ( 2006; ). RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 103, 13514–13519.[CrossRef]
    [Google Scholar]
  14. Choudhury, D., Thompson, A., Stojanoff, V., Langermann, S., Pinkner, J., Hultgren, S. J. & Knight, S. D. ( 1999; ). X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285, 1061–1066.[CrossRef]
    [Google Scholar]
  15. Cornelis, G. R. ( 2002; ). The Yersinia Ysc–Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3, 742–752.[CrossRef]
    [Google Scholar]
  16. Cornelis, G. R., Boland, A., Boyd, A. P., Geuijen, C., Iriarte, M., Neyt, C., Sory, M.-P. & Stainier, I. ( 1998; ). The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 62, 1315–1352.
    [Google Scholar]
  17. Cornelius, C. A., Quenee, L. E., Elli, D., Ciletti, N. A. & Schneewind, O. ( 2009; ). Yersinia pestis IS1541 transposition provides for escape from plague immunity. Infect Immun 77, 1807–1816.[CrossRef]
    [Google Scholar]
  18. Darby, C., Hsu, J. W., Ghori, N. & Falkow, S. ( 2002; ). Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243–244.[CrossRef]
    [Google Scholar]
  19. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  20. DeBord, K. L., Anderson, D. M., Marketon, M. M., Overheim, K. A., DePaolo, R. W., Ciletti, N. A., Jabri, B. & Schneewind, O. ( 2006; ). Immunogenicity and protective immunity against bubonic plague and pneumonic plague by immunization of mice with the recombinant V10 antigen, a variant of LcrV. Infect Immun 74, 4910–4914.[CrossRef]
    [Google Scholar]
  21. Deng, W., Burland, V., Plunkett, G., III, Boutin, A., Mayhew, G. F., Liss, P., Perna, N. T., Rose, D. J., Mau, B. & other authors ( 2002; ). Genome sequence of Yersinia pestis KIM. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  22. Drozdov, I. G., Anisimov, A. P., Samoilova, S. V., Yezhov, I. N., Yeremin, S. A., Karlyshev, A. V., Krasilnikova, V. M. & Kravchenko, V. I. ( 1995; ). Virulent non-capsulate Yersinia pestis variants constructed by insertion mutagenesis. J Med Microbiol 42, 264–268.[CrossRef]
    [Google Scholar]
  23. El Tahir, Y. & Skurnik, M. ( 2001; ). YadA, the multifaceted Yersinia adhesin. Int J Med Microbiol 291, 209–218.[CrossRef]
    [Google Scholar]
  24. Felek, S. & Krukonis, E. S. ( 2009; ). The Yersinia pestis Ail protein mediates binding and Yop delivery to host cells required for plague virulence. Infect Immun 77, 825–836.[CrossRef]
    [Google Scholar]
  25. Felek, S., Lawrenz, M. B. & Krukonis, E. S. ( 2008; ). The Yersinia pestis autotransporter YapC mediates host cell binding, autoaggregation and biofilm formation. Microbiology 154, 1802–1812.[CrossRef]
    [Google Scholar]
  26. Felek, S., Tsang, T. M. & Krukonis, E. S. ( 2010; ). Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun 78, 4134–4150.[CrossRef]
    [Google Scholar]
  27. Fetherston, J. D., Schuetze, P. & Perry, R. D. ( 1992; ). Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol 6, 2693–2704.[CrossRef]
    [Google Scholar]
  28. Fox, E. N. & Higuchi, K. ( 1958; ). Synthesis of the fraction I antigenic protein by Pasteurella pestis. J Bacteriol 75, 209–216.
    [Google Scholar]
  29. Fux, C. A., Costerton, J. W., Stewart, P. S. & Stoodley, P. ( 2005; ). Survival strategies of infectious biofilms. Trends Microbiol 13, 34–40.[CrossRef]
    [Google Scholar]
  30. Galván, E. M., Chen, H. & Schifferli, D. M. ( 2007; ). The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun 75, 1272–1279.[CrossRef]
    [Google Scholar]
  31. Goguen, J. D., Walker, W. S., Hatch, T. P. & Yother, J. ( 1986; ). Plasmid-determined cytotoxicity in Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun 51, 788–794.
    [Google Scholar]
  32. Gong, S., Bearden, S. W., Geoffroy, V. A., Fetherston, J. D. & Perry, R. D. ( 2001; ). Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 69, 2829–2837.[CrossRef]
    [Google Scholar]
  33. Hantke, K. ( 1984; ). Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet 197, 337–341.[CrossRef]
    [Google Scholar]
  34. Hare, J. M., Wagner, A. K. & McDonough, K. A. ( 1999; ). Independent acquisition and insertion into different chromosomal locations of the same pathogenicity island in Yersinia pestis and Yersinia pseudotuberculosis. Mol Microbiol 31, 291–303.[CrossRef]
    [Google Scholar]
  35. Higuchi, K. & Smith, J. L. ( 1961; ). Studies on the nutrition and physiology of Pasteurella pestis. VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol 81, 605–608.
    [Google Scholar]
  36. Hinnebusch, B. J., Perry, R. D. & Schwan, T. G. ( 1996; ). Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367–370.[CrossRef]
    [Google Scholar]
  37. Hoschützky, H., Lottspeich, F. & Jann, K. ( 1989; ). Isolation and characterization of the alpha-galactosyl-1,4-beta-galactosyl-specific adhesin (P adhesin) from fimbriated Escherichia coli. Infect Immun 57, 76–81.
    [Google Scholar]
  38. Huang, X.-Z. & Lindler, L. E. ( 2004; ). The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of yersinia outer proteins and capsule antigen. Infect Immun 72, 7212–7219.[CrossRef]
    [Google Scholar]
  39. Hung, D. L., Knight, S. D., Woods, R. M., Pinkner, J. S. & Hultgren, S. J. ( 1996; ). Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15, 3792–3805.
    [Google Scholar]
  40. Isberg, R. R., Voorhis, D. L. & Falkow, S. ( 1987; ). Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50, 769–778.[CrossRef]
    [Google Scholar]
  41. Jefferson, K. K. ( 2004; ). What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236, 163–173.[CrossRef]
    [Google Scholar]
  42. Kienle, Z., Emody, L., Svanborg, C. & O'Toole, P. ( 1992; ). Adhesive properties conferred by the plasminogen activator of Yersinia pestis. J Gen Microbiol 138, 1679–1687.[CrossRef]
    [Google Scholar]
  43. Kirillina, O., Fetherston, J. D., Bobrov, A. G., Abney, J. & Perry, R. D. ( 2004; ). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54, 75–88.[CrossRef]
    [Google Scholar]
  44. Kolodziejek, A. M., Sinclair, D. J., Seo, K. S., Schnider, D. R., Deobald, C. F., Rohde, H. N., Viall, A. K., Minnich, S. S., Hovde, C. J. & other authors ( 2007; ). Phenotypic characterization of OmpX, an Ail homologue of Yersinia pestis KIM. Microbiology 153, 2941–2951.[CrossRef]
    [Google Scholar]
  45. Kuehn, M. J., Heuser, J., Normark, S. & Hultgren, S. J. ( 1992; ). P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356, 252–255.[CrossRef]
    [Google Scholar]
  46. Lähteenmäki, K., Virkola, R., Saren, A., Emody, L. & Korhonen, T. K. ( 1998; ). Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66, 5755–5762.
    [Google Scholar]
  47. Lathem, W. W., Crosby, S. D., Miller, V. L. & Goldman, W. E. ( 2005; ). Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A 102, 17786–17791.[CrossRef]
    [Google Scholar]
  48. Lindler, L. E. & Tall, B. D. ( 1993; ). Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 8, 311–324.[CrossRef]
    [Google Scholar]
  49. Lindler, L. E., Klempner, M. & Straley, S. ( 1990; ). Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 58, 2569–2577.
    [Google Scholar]
  50. Makoveichuk, E., Cherepanov, P., Lundberg, S., Forsberg, A. & Olivecrona, G. ( 2003; ). pH 6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J Lipid Res 44, 320–330.[CrossRef]
    [Google Scholar]
  51. Miller, V. L. & Falkow, S. ( 1988; ). Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun 56, 1242–1248.
    [Google Scholar]
  52. Morales, V. M., Backman, A. & Bagdasarian, M. ( 1991; ). A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97, 39–47.[CrossRef]
    [Google Scholar]
  53. Nishiyama, M., Ishikawa, T., Rechsteiner, H. & Glockshuber, R. ( 2008; ). Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Science 320, 376–379.[CrossRef]
    [Google Scholar]
  54. O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. & Kolter, R. ( 1999; ). Genetic approaches to study of biofilms. Methods Enzymol 310, 91–109.
    [Google Scholar]
  55. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  56. Patel, R. ( 2005; ). Biofilms and antimicrobial resistance. Clin Orthop Relat Res 41–47.
    [Google Scholar]
  57. Payne, D., Tatham, D., Williamson, E. D. & Titball, R. W. ( 1998; ). The pH 6 antigen of Yersinia pestis binds to beta 1-linked galactosyl residues in glycosphingolipids. Infect Immun 66, 4545–4548.
    [Google Scholar]
  58. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  59. Proft, T. & Baker, E. N. ( 2009; ). Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci 66, 613–635.[CrossRef]
    [Google Scholar]
  60. Quenee, L. E., Cornelius, C. A., Ciletti, N. A., Elli, D. & Schneewind, O. ( 2008; ). Yersinia pestis caf1 variants and the limits of plague vaccine protection. Infect Immun 76, 2025–2036.[CrossRef]
    [Google Scholar]
  61. Remaut, H., Tang, C., Henderson, N. S., Pinkner, J. S., Wang, T., Hultgren, S. J., Thanassi, D. G., Waksman, G. & Li, H. ( 2008; ). Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133, 640–652.[CrossRef]
    [Google Scholar]
  62. Runco, L. M., Myrczek, S., Bliska, J. B. & Thanassi, D. G. ( 2008; ). Biogenesis of the fraction 1 capsule and analysis of the ultrastructure of Yersinia pestis. J Bacteriol 190, 3381–3385.[CrossRef]
    [Google Scholar]
  63. Sauer, F. G., Futterer, K., Pinkner, J. S., Dodson, K. W., Hultgren, S. J. & Waksman, G. ( 1999; ). Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061.[CrossRef]
    [Google Scholar]
  64. Sauer, F. G., Mulvey, M. A., Schilling, J. D., Martinez, J. J. & Hultgren, S. J. ( 2000; ). Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol 3, 65–72.[CrossRef]
    [Google Scholar]
  65. Sodeinde, O. A., Subrahmanyam, Y., Stark, K., Quan, T., Bao, Y. & Goguen, J. ( 1992; ). A surface protease and the invasive character of plague. Science 258, 1004–1007.[CrossRef]
    [Google Scholar]
  66. Stewart, P. S. & William Costerton, J. ( 2001; ). Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138.[CrossRef]
    [Google Scholar]
  67. Straley, S. C. & Bowmer, W. S. ( 1986; ). Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun 51, 445–454.
    [Google Scholar]
  68. Straley, S. C. & Cibull, M. ( 1989; ). Differential clearance and host-pathogen interactions of YopE and YopK YopL Yersinia pestis in BALB/c mice. Infect Immun 57, 1200–1210.
    [Google Scholar]
  69. Styer, K. L., Hopkins, G. W., Bartra, S. S., Plano, G. V., Frothingham, R. & Aballay, A. ( 2005; ). Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors. EMBO Rep 6, 992–997.[CrossRef]
    [Google Scholar]
  70. Thanassi, D. G. & Hultgren, S. J. ( 2000; ). Assembly of complex organelles: pilus biogenesis in Gram-negative bacteria as a model system. Methods 20, 111–126.[CrossRef]
    [Google Scholar]
  71. Thanassi, D. G., Saulino, E. T. & Hultgren, S. J. ( 1998; ). The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1, 223–231.[CrossRef]
    [Google Scholar]
  72. Welkos, S. L., Friedlander, A. M. & Davis, K. J. ( 1997; ). Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain C092. Microb Pathog 23, 211–223.[CrossRef]
    [Google Scholar]
  73. Yang, Y. & Isberg, R. R. ( 1997; ). Transcriptional regulation of the Yersinia pseudotuberculosis pH 6 antigen adhesin by two envelope-associated components. Mol Microbiol 24, 499–510.[CrossRef]
    [Google Scholar]
  74. Yang, Y., Merriam, J., Mueller, J. & Isberg, R. ( 1996; ). The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun 64, 2483–2489.
    [Google Scholar]
  75. Yu, D., Ellis, H. M., Lee, E.-C., Jenkins, N. A., Copeland, N. G. & Court, D. L. ( 2000; ). An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97, 5978–5983.[CrossRef]
    [Google Scholar]
  76. Zav'yalov, V. P., Abramov, V. M., Cherepanov, P. G., Spirina, G. V., Chernovskaya, T. V., Vasiliev, A. M. & Zav'yalova, G. A. ( 1996; ). pH 6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol 14, 53–57.[CrossRef]
    [Google Scholar]
  77. Zavialov, A. V., Berglund, J., Pudney, A. F., Fooks, L. J., Ibrahim, T. M., MacIntyre, S. & Knight, S. D. ( 2003; ). Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113, 587–596.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044826-0
Loading
/content/journal/micro/10.1099/mic.0.044826-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error