1887

Abstract

genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δ strain AAEC185 to test the assembled surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of . One locus, , was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate biofilm formation. When each chaperone/usher locus was deleted in , only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system as well as in mouse tissues following intravenous infection. However, a mutant in the chaperone/usher locus was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, , was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044826-0
2011-03-01
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/805.html?itemId=/content/journal/micro/10.1099/mic.0.044826-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E. 1999; Yersinia pestis , the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis . Proc Natl Acad Sci U S A 96:14043–14048
    [Google Scholar]
  2. Alteri C. J., Mobley H. L. 2007; Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75:2679–2688
    [Google Scholar]
  3. Anderson G. W. J., Leary S. E., Williamson E. D., Titball R. W., Welkos S. L., Worsham P. L., Friedlander A. M. 1996; Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis . Infect Immun 64:4580–4585
    [Google Scholar]
  4. Barnhart M. M., Chapman M. R. 2006; Curli biogenesis and function. Annu Rev Microbiol 60:131–147
    [Google Scholar]
  5. Barnhart M. M., Pinkner J. S., Soto G. E., Sauer F. G., Langermann S., Waksman G., Frieden C., Hultgren S. J. 2000; PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci U S A 97:7709–7714
    [Google Scholar]
  6. Beesley E. D., Brubaker R. R., Janssen W. A., Surgalla M. J. 1967; Pesticins III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94:19–26
    [Google Scholar]
  7. Ben-Efraim S., Aronson M., Bichowsky-Slomnicki L. 1961; New antigenic component of Pasteurella pestis formed under specified conditions of pH and temperature. J Bacteriol 81:704–714
    [Google Scholar]
  8. Bichowsky-Slomnicki L., Ben-Efraim S. 1963; Biological activities in extracts of Pasteurella pestis and their relation to the “pH 6 antigen”. J Bacteriol 86:101–111
    [Google Scholar]
  9. Bliska J. B., Copass M. C., Falkow S. 1993; The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect Immun 61:3914–3921
    [Google Scholar]
  10. Bobrov A. G., Kirillina O., Forman S., Mack D., Perry R. D. 2008; Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol 10:1419–1432
    [Google Scholar]
  11. Buchrieser C., Rusniok C., Frangeul L., Couve E., Billault A., Kunst F., Carniel E., Glaser P. 1999; The 102-Kilobase pgm locus of Yersinia pestis : sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun 67:4851–4861
    [Google Scholar]
  12. Cantor N. 2001 In the Wake of the Plague New York: Perennial;
    [Google Scholar]
  13. Cathelyn J. S., Crosby S. D., Lathem W. W., Goldman W. E., Miller V. L. 2006; RovA, a global regulator of Yersinia pestis , specifically required for bubonic plague. Proc Natl Acad Sci U S A 103:13514–13519
    [Google Scholar]
  14. Choudhury D., Thompson A., Stojanoff V., Langermann S., Pinkner J., Hultgren S. J., Knight S. D. 1999; X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli . Science 285:1061–1066
    [Google Scholar]
  15. Cornelis G. R. 2002; The Yersinia Ysc–Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3:742–752
    [Google Scholar]
  16. Cornelis G. R., Boland A., Boyd A. P., Geuijen C., Iriarte M., Neyt C., Sory M.-P., Stainier I. 1998; The virulence plasmid of Yersinia , an antihost genome. Microbiol Mol Biol Rev 62:1315–1352
    [Google Scholar]
  17. Cornelius C. A., Quenee L. E., Elli D., Ciletti N. A., Schneewind O. 2009; Yersinia pestis IS 1541 transposition provides for escape from plague immunity. Infect Immun 77:1807–1816
    [Google Scholar]
  18. Darby C., Hsu J. W., Ghori N., Falkow S. 2002; Caenorhabditis elegans : plague bacteria biofilm blocks food intake. Nature 417:243–244
    [Google Scholar]
  19. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  20. DeBord K. L., Anderson D. M., Marketon M. M., Overheim K. A., DePaolo R. W., Ciletti N. A., Jabri B., Schneewind O. 2006; Immunogenicity and protective immunity against bubonic plague and pneumonic plague by immunization of mice with the recombinant V10 antigen, a variant of LcrV. Infect Immun 74:4910–4914
    [Google Scholar]
  21. Deng W., Burland V., Plunkett G. III, Boutin A., Mayhew G. F., Liss P., Perna N. T., Rose D. J., Mau B. other authors 2002; Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601–4611
    [Google Scholar]
  22. Drozdov I. G., Anisimov A. P., Samoilova S. V., Yezhov I. N., Yeremin S. A., Karlyshev A. V., Krasilnikova V. M., Kravchenko V. I. 1995; Virulent non-capsulate Yersinia pestis variants constructed by insertion mutagenesis. J Med Microbiol 42:264–268
    [Google Scholar]
  23. El Tahir Y., Skurnik M. 2001; YadA, the multifaceted Yersinia adhesin. Int J Med Microbiol 291:209–218
    [Google Scholar]
  24. Felek S., Krukonis E. S. 2009; The Yersinia pestis Ail protein mediates binding and Yop delivery to host cells required for plague virulence. Infect Immun 77:825–836
    [Google Scholar]
  25. Felek S., Lawrenz M. B., Krukonis E. S. 2008; The Yersinia pestis autotransporter YapC mediates host cell binding, autoaggregation and biofilm formation. Microbiology 154:1802–1812
    [Google Scholar]
  26. Felek S., Tsang T. M., Krukonis E. S. 2010; Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun 78:4134–4150
    [Google Scholar]
  27. Fetherston J. D., Schuetze P., Perry R. D. 1992; Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol 6:2693–2704
    [Google Scholar]
  28. Fox E. N., Higuchi K. 1958; Synthesis of the fraction I antigenic protein by Pasteurella pestis . J Bacteriol 75:209–216
    [Google Scholar]
  29. Fux C. A., Costerton J. W., Stewart P. S., Stoodley P. 2005; Survival strategies of infectious biofilms. Trends Microbiol 13:34–40
    [Google Scholar]
  30. Galván E. M., Chen H., Schifferli D. M. 2007; The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun 75:1272–1279
    [Google Scholar]
  31. Goguen J. D., Walker W. S., Hatch T. P., Yother J. 1986; Plasmid-determined cytotoxicity in Yersinia pestis and Yersinia pseudotuberculosis . Infect Immun 51:788–794
    [Google Scholar]
  32. Gong S., Bearden S. W., Geoffroy V. A., Fetherston J. D., Perry R. D. 2001; Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 69:2829–2837
    [Google Scholar]
  33. Hantke K. 1984; Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet 197:337–341
    [Google Scholar]
  34. Hare J. M., Wagner A. K., McDonough K. A. 1999; Independent acquisition and insertion into different chromosomal locations of the same pathogenicity island in Yersinia pestis and Yersinia pseudotuberculosis . Mol Microbiol 31:291–303
    [Google Scholar]
  35. Higuchi K., Smith J. L. 1961; Studies on the nutrition and physiology of Pasteurella pestis . VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol 81:605–608
    [Google Scholar]
  36. Hinnebusch B. J., Perry R. D., Schwan T. G. 1996; Role of the Yersinia pestis hemin storage ( hms ) locus in the transmission of plague by fleas. Science 273:367–370
    [Google Scholar]
  37. Hoschützky H., Lottspeich F., Jann K. 1989; Isolation and characterization of the alpha-galactosyl-1,4-beta-galactosyl-specific adhesin (P adhesin) from fimbriated Escherichia coli . Infect Immun 57:76–81
    [Google Scholar]
  38. Huang X.-Z., Lindler L. E. 2004; The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of yersinia outer proteins and capsule antigen. Infect Immun 72:7212–7219
    [Google Scholar]
  39. Hung D. L., Knight S. D., Woods R. M., Pinkner J. S., Hultgren S. J. 1996; Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15:3792–3805
    [Google Scholar]
  40. Isberg R. R., Voorhis D. L., Falkow S. 1987; Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50:769–778
    [Google Scholar]
  41. Jefferson K. K. 2004; What drives bacteria to produce a biofilm?. FEMS Microbiol Lett 236:163–173
    [Google Scholar]
  42. Kienle Z., Emody L., Svanborg C., O'Toole P. 1992; Adhesive properties conferred by the plasminogen activator of Yersinia pestis . J Gen Microbiol 138:1679–1687
    [Google Scholar]
  43. Kirillina O., Fetherston J. D., Bobrov A. G., Abney J., Perry R. D. 2004; HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis . Mol Microbiol 54:75–88
    [Google Scholar]
  44. Kolodziejek A. M., Sinclair D. J., Seo K. S., Schnider D. R., Deobald C. F., Rohde H. N., Viall A. K., Minnich S. S., Hovde C. J. other authors 2007; Phenotypic characterization of OmpX, an Ail homologue of Yersinia pestis KIM. Microbiology 153:2941–2951
    [Google Scholar]
  45. Kuehn M. J., Heuser J., Normark S., Hultgren S. J. 1992; P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356:252–255
    [Google Scholar]
  46. Lähteenmäki K., Virkola R., Saren A., Emody L., Korhonen T. K. 1998; Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66:5755–5762
    [Google Scholar]
  47. Lathem W. W., Crosby S. D., Miller V. L., Goldman W. E. 2005; Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A 102:17786–17791
    [Google Scholar]
  48. Lindler L. E., Tall B. D. 1993; Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 8:311–324
    [Google Scholar]
  49. Lindler L. E., Klempner M., Straley S. 1990; Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 58:2569–2577
    [Google Scholar]
  50. Makoveichuk E., Cherepanov P., Lundberg S., Forsberg A., Olivecrona G. 2003; pH 6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J Lipid Res 44:320–330
    [Google Scholar]
  51. Miller V. L., Falkow S. 1988; Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun 56:1242–1248
    [Google Scholar]
  52. Morales V. M., Backman A., Bagdasarian M. 1991; A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97:39–47
    [Google Scholar]
  53. Nishiyama M., Ishikawa T., Rechsteiner H., Glockshuber R. 2008; Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Science 320:376–379
    [Google Scholar]
  54. O'Toole G. A., Pratt L. A., Watnick P. I., Newman D. K., Weaver V. B., Kolter R. 1999; Genetic approaches to study of biofilms. Methods Enzymol 310:91–109
    [Google Scholar]
  55. Parkhill J., Wren B. W., Thomson N. R., Titball R. W., Holden M. T., Prentice M. B., Sebaihia M., James K. D., Churcher C. other authors 2001; Genome sequence of Yersinia pestis , the causative agent of plague. Nature 413:523–527
    [Google Scholar]
  56. Patel R. 2005; Biofilms and antimicrobial resistance. Clin Orthop Relat Res41–47
    [Google Scholar]
  57. Payne D., Tatham D., Williamson E. D., Titball R. W. 1998; The pH 6 antigen of Yersinia pestis binds to beta 1-linked galactosyl residues in glycosphingolipids. Infect Immun 66:4545–4548
    [Google Scholar]
  58. Perry R. D., Fetherston J. D. 1997; Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10:35–66
    [Google Scholar]
  59. Proft T., Baker E. N. 2009; Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci 66:613–635
    [Google Scholar]
  60. Quenee L. E., Cornelius C. A., Ciletti N. A., Elli D., Schneewind O. 2008; Yersinia pestis caf1 variants and the limits of plague vaccine protection. Infect Immun 76:2025–2036
    [Google Scholar]
  61. Remaut H., Tang C., Henderson N. S., Pinkner J. S., Wang T., Hultgren S. J., Thanassi D. G., Waksman G., Li H. 2008; Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133:640–652
    [Google Scholar]
  62. Runco L. M., Myrczek S., Bliska J. B., Thanassi D. G. 2008; Biogenesis of the fraction 1 capsule and analysis of the ultrastructure of Yersinia pestis . J Bacteriol 190:3381–3385
    [Google Scholar]
  63. Sauer F. G., Futterer K., Pinkner J. S., Dodson K. W., Hultgren S. J., Waksman G. 1999; Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061
    [Google Scholar]
  64. Sauer F. G., Mulvey M. A., Schilling J. D., Martinez J. J., Hultgren S. J. 2000; Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol 3:65–72
    [Google Scholar]
  65. Sodeinde O. A., Subrahmanyam Y., Stark K., Quan T., Bao Y., Goguen J. 1992; A surface protease and the invasive character of plague. Science 258:1004–1007
    [Google Scholar]
  66. Stewart P. S., William Costerton J. 2001; Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138
    [Google Scholar]
  67. Straley S. C., Bowmer W. S. 1986; Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun 51:445–454
    [Google Scholar]
  68. Straley S. C., Cibull M. 1989; Differential clearance and host-pathogen interactions of YopE and YopK YopL Yersinia pestis in BALB/c mice. Infect Immun 57:1200–1210
    [Google Scholar]
  69. Styer K. L., Hopkins G. W., Bartra S. S., Plano G. V., Frothingham R., Aballay A. 2005; Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors. EMBO Rep 6:992–997
    [Google Scholar]
  70. Thanassi D. G., Hultgren S. J. 2000; Assembly of complex organelles: pilus biogenesis in Gram-negative bacteria as a model system. Methods 20:111–126
    [Google Scholar]
  71. Thanassi D. G., Saulino E. T., Hultgren S. J. 1998; The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1:223–231
    [Google Scholar]
  72. Welkos S. L., Friedlander A. M., Davis K. J. 1997; Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain C092. Microb Pathog 23:211–223
    [Google Scholar]
  73. Yang Y., Isberg R. R. 1997; Transcriptional regulation of the Yersinia pseudotuberculosis pH 6 antigen adhesin by two envelope-associated components. Mol Microbiol 24:499–510
    [Google Scholar]
  74. Yang Y., Merriam J., Mueller J., Isberg R. 1996; The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun 64:2483–2489
    [Google Scholar]
  75. Yu D., Ellis H. M., Lee E.-C., Jenkins N. A., Copeland N. G., Court D. L. 2000; An efficient recombination system for chromosome engineering in Escherichia coli . Proc Natl Acad Sci U S A 97:5978–5983
    [Google Scholar]
  76. Zav'yalov V. P., Abramov V. M., Cherepanov P. G., Spirina G. V., Chernovskaya T. V., Vasiliev A. M., Zav'yalova G. A. 1996; pH 6 antigen (PsaA protein) of Yersinia pestis , a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol 14:53–57
    [Google Scholar]
  77. Zavialov A. V., Berglund J., Pudney A. F., Fooks L. J., Ibrahim T. M., MacIntyre S., Knight S. D. 2003; Structure and biogenesis of the capsular F1 antigen from Yersinia pestis : preserved folding energy drives fiber formation. Cell 113:587–596
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.044826-0
Loading
/content/journal/micro/10.1099/mic.0.044826-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error