1887

Abstract

An efficient 3,4-dichloroaniline (3,4-DCA)-mineralizing bacterium has been isolated from enrichment cultures originating from a soil sample with a history of repeated exposure to diuron, a major metabolite of which is 3,4-DCA. This bacterium, IMT21, also mineralized 2,3-, 2,4-, 2,5- and 3,5-DCA as sole sources of carbon and energy. These five DCA isomers were degraded via two different routes. 2,3-, 2,4- and 2,5-DCA were degraded via previously unknown dichloroaminophenol metabolites, whereas 3,4- and 3,5-DCA were degraded via dichloroacetanilide.

Keyword(s): DCA, dichloroaniline
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045393-0
2011-03-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/721.html?itemId=/content/journal/micro/10.1099/mic.0.045393-0&mimeType=html&fmt=ahah

References

  1. Argese, E., Bettiol, C., Agnoli, F., Zambon, A., Mazzola, M. & Ghirardini, A. V. ( 2001; ). Assessment of chloroaniline toxicity by the submitochondrial particle assay. Environ Toxicol Chem 20, 826–832.[CrossRef]
    [Google Scholar]
  2. Baker, G. C., Smith, J. J. & Cowan, D. A. ( 2003; ). Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55, 541–555.[CrossRef]
    [Google Scholar]
  3. Claver, A., Ormad, P., Rodriguez, L. & Ovelleiro, J. L. ( 2006; ). Study of the presence of pesticides in surface waters in the Ebro river basin (Spain). Chemosphere 64, 1437–1443.[CrossRef]
    [Google Scholar]
  4. Dejonghe, W., Goris, J., Dierickx, A., Dobbeleer, V., Crul, K., Vos, P., Verstraete, W. & Top, E. M. ( 2002; ). Diversity of 3-chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation. FEMS Microbiol Ecol 42, 315–325.[CrossRef]
    [Google Scholar]
  5. Dejonghe, W., Berteloot, E., Goris, J., Boon, N., Crul, K., Maertens, S., Höfte, M., De Vos, P., Verstraete, W. & Top, E. M. ( 2003; ). Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69, 1532–1541.[CrossRef]
    [Google Scholar]
  6. El-Deeb, B. A., Ali, A. M. & Ali, K. A. ( 2000; ). Some evidences for the involvement of plasmid in diuron herbicide degradation. Acta Microbiol Immunol Hung 47, 63–73.
    [Google Scholar]
  7. Giacomazzi, S. & Cochet, N. ( 2004; ). Environmental impact of diuron transformation: a review. Chemosphere 56, 1021–1032.[CrossRef]
    [Google Scholar]
  8. Götz, R., Bauer, O. H., Friesel, P. & Roch, K. ( 1998; ). Organic trace compounds in the water of the River Elbe near Hamburg, Part I. Chemosphere 36, 2085–2101.[CrossRef]
    [Google Scholar]
  9. Haigler, B. E., Nishino, S. F. & Spain, J. C. ( 1988; ). Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54, 294–301.
    [Google Scholar]
  10. Kim, Y. M., Park, K., Kim, W. C., Shin, J. H., Kim, J. E., Park, H. D. & Rhee, I. K. ( 2007; ). Cloning and characterization of a catechol-degrading gene cluster from 3,4-dichloroaniline degrading bacterium Pseudomonas sp. KB35B. J Agric Food Chem 55, 4722–4727.[CrossRef]
    [Google Scholar]
  11. Lee, J. B., Sohn, H. Y., Shin, K. S., Kim, J. S., Jo, M. S., Jeon, C. P., Jang, J. O., Kim, J. E. & Kwon, G. S. ( 2008; ). Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline. J Microbiol Biotechnol 18, 343–349.
    [Google Scholar]
  12. Lo, H. H., Brown, P. I. & Rankin, G. O. ( 1990; ). Acute nephrotoxicity induced by isomeric dichloroanilines in Fischer 344 rats. Toxicology 63, 215–231.[CrossRef]
    [Google Scholar]
  13. Martins, M., Rodrigues-Lima, F., Dairou, J., Lamouri, A., Malagnac, F., Silar, P. & Dupret, J. M. ( 2009; ). An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies. J Biol Chem 284, 18726–18733.[CrossRef]
    [Google Scholar]
  14. NTP Comparative Toxicity Studies ( 1998; ). NTP comparative toxicity studies of o-, m-, and p-chloroanilines (CAS nos. 95-51-2; 108-42-9; and 106-47-8) administered by gavage to F344/N rats and B6C3F1 mice. Toxic Rep Ser 43, 1–F20.
    [Google Scholar]
  15. Padmanabhan, J., Parthasarathi, R., Subramanian, V. & Chattaraj, P. K. ( 2006; ). Theoretical study on the complete series of chloroanilines. J Phys Chem A 110, 9900–9907.[CrossRef]
    [Google Scholar]
  16. Peng, J. F., Liu, J. F., Jiang, G. B., Tai, C. & Huang, M. J. ( 2005; ). Ionic liquid for high temperature headspace liquid-phase microextraction of chlorinated anilines in environmental water samples. J Chromatogr A 1072, 3–6.[CrossRef]
    [Google Scholar]
  17. Sørensen, S. R., Albers, C. N. & Aamand, J. ( 2008; ). Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74, 2332–2340.[CrossRef]
    [Google Scholar]
  18. Spain, J. C. & Nishino, S. F. ( 1987; ). Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53, 1010–1019.
    [Google Scholar]
  19. Spiess, E., Sommer, C. & Gorisch, H. ( 1995; ). Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1. Appl Environ Microbiol 61, 3884–3888.
    [Google Scholar]
  20. Struijs, J. & Rogers, J. E. ( 1989; ). Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl Environ Microbiol 55, 2527–2531.
    [Google Scholar]
  21. Surovtseva, E. G., Vasil'eva, G. K., Baskunov, B. P. & Vol'nova, A. I. ( 1981; ). Decomposition of 3,4-dichloroaniline by an Alcaligenes faecalis culture. Mikrobiologiia 50, 740–743.
    [Google Scholar]
  22. Surovtseva, E. G., Ivoilov, V. S., Karasevich, Y. N. & Vaci'ev, G. K. ( 1985; ). Chlorinated anilines, a source of carbon, nitrogen, and energy for Pseudomonas diminuta. Mikrobiologiia 54, 948–952.
    [Google Scholar]
  23. Surovtseva, E. G., Ivoilov, V. S. & Karasevich, Y. N. ( 1986; ). Metabolism of chlorinated anilines by Pseudomonas diminuta. Mikrobiologiia 55, 591–595.
    [Google Scholar]
  24. Surovtseva, E. G., Sukhikh, A. P. & Ivoilov, V. S. ( 1993; ). Isozymes of the pathway for aniline and 4-chloroaniline preparatory metabolism in Alcaligenes sp. Mikrobiologiia 61, 99–106.
    [Google Scholar]
  25. Takagi, K., Iwasaki, A., Kamei, I., Satsuma, K., Yoshioka, Y. & Harada, N. ( 2009; ). Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Appl Environ Microbiol 75, 4452–4458.[CrossRef]
    [Google Scholar]
  26. Travkin, V., Baskunov, B. P., Golovlev, E. L., Boersma, M. G., Boeren, S., Vervoort, J., van Berkel, W. J., Rietjens, I. M. & Golovleva, L. A. ( 2002; ). Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiol Lett 209, 307–312.[CrossRef]
    [Google Scholar]
  27. Travkin, V. M., Solyanikova, I. P., Rietjens, I. M., Vervoort, J., van Berkel, W. J. & Golovleva, L. A. ( 2003; ). Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health B 38, 121–132.[CrossRef]
    [Google Scholar]
  28. Valentovic, M. A., Ball, J. G., Anestis, D. K. & Rankin, G. O. ( 1995; ). Comparison of the in vitro toxicity of dichloroaniline structural isomers. Toxicol In Vitro 9, 75–81.[CrossRef]
    [Google Scholar]
  29. Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. & Swings, J. ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60, 407–438.
    [Google Scholar]
  30. Vol'nova, A. I., Surovtseva, E. G. & Vasil'eva, G. K. ( 1980; ). Acetylation of 3,4-dichloroaniline by representatives of the genus Pseudomonas. Mikrobiologiia 49, 167–170.
    [Google Scholar]
  31. Yan, D. Z., Liu, H. & Zhou, N. Y. ( 2006; ). Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72, 2283–2286.[CrossRef]
    [Google Scholar]
  32. You, I. S. & Bartha, R. ( 1982; ). Stimulation of 3,4-dichloroaniline mineralization by aniline. Appl Environ Microbiol 44, 678–681.
    [Google Scholar]
  33. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. ( 2000; ). A greedy algorithm for aligning DNA sequences. J Comput Biol 7, 203–214.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045393-0
Loading
/content/journal/micro/10.1099/mic.0.045393-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error