1887

Abstract

Finding two or more genotypes of a single species within an infected sample is a not infrequent event. In this work, three strains of decreasing extra-intestinal virulence (pathogenic B2S and B1S strains, and the avirulent K-12 MG1655 strain) were tested in septicaemia and urinary tract infection (UTI) mouse models, either separately or in pairs. Survival was monitored and bacteria were counted in various organs. Serum interleukin (IL)-6, tumour necrosis factor alpha (TNF) and IL-10 were measured. We show that a mix of high amounts of B1S or of MG1655 with low amounts of B2S killed more rapidly (B1S), or killed more mice (MG1655), than either high amounts of B1S, high amounts of MG1655 or low amounts of B2S separately in the mouse septicaemia model. This bacterial synergy persisted when high amounts of dead or abnormal-LPS K-12 cells were injected together with a low amount of B2S. In both septicaemia and UTI models, significantly more bacteria were recovered from the organs of mice injected with the MG1655/B2S mix than from those of mice injected with the inocula separately. Consistently, in the septicaemia model, more IL-6 was secreted before death by the mice that were injected with the mix of bacteria than by the mice that were injected with the inocula separately. The synergistically enhanced mortality in the case of co-infection in the septicaemia model persisted in , and IL-6 knockout mice. This synergistically increased virulence resulting from the interaction between an avirulent and a pathogenic strain of the same bacterial species raises questions about the role of avirulent bacteria in the development of some extra-intestinal infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037416-0
2011-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/774.html?itemId=/content/journal/micro/10.1099/mic.0.037416-0&mimeType=html&fmt=ahah

References

  1. Adiba, S., Nizak, C., van Baalen, M., Denamur, E. & Depaulis, F. ( 2010; ). From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS ONE 5, e11882.[CrossRef]
    [Google Scholar]
  2. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L. & Mori, H. ( 2006; ). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006.0008.
    [Google Scholar]
  3. Berg, R. D. ( 1996; ). The indigenous gastrointestinal microflora. Trends Microbiol 4, 430–435.[CrossRef]
    [Google Scholar]
  4. Berg, R. D. & Garlington, A. W. ( 1979; ). Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun 23, 403–411.
    [Google Scholar]
  5. Beutler, B. ( 2000; ). Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12, 20–26.[CrossRef]
    [Google Scholar]
  6. Brogden, K. A., Guthmiller, J. M. & Taylor, C. E. ( 2005; ). Human polymicrobial infections. Lancet 365, 253–255.[CrossRef]
    [Google Scholar]
  7. Brook, I. ( 2005; ). The role of anaerobic bacteria in tonsillitis. Int J Pediatr Otorhinolaryngol 69, 9–19.[CrossRef]
    [Google Scholar]
  8. Buckling, A., Harrison, F., Vos, M., Brockhurst, M. A., Gardner, A., West, S. A. & Griffin, A. ( 2007; ). Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol 62, 135–141.[CrossRef]
    [Google Scholar]
  9. Clark, E., Hoare, C., Tanianis-Hughes, J., Carlson, G. L. & Warhurst, G. ( 2005; ). Interferon γ induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology 128, 1258–1267.[CrossRef]
    [Google Scholar]
  10. Clermont, O., Bonacorsi, S. & Bingen, E. ( 2000; ). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66, 4555–4558.[CrossRef]
    [Google Scholar]
  11. Cohen, J. ( 1999; ). The immunopathogenesis of sepsis. Nature 420, 885–891.
    [Google Scholar]
  12. Cooper, G. S., Havlir, D. S., Shlaes, D. M. & Salata, R. A. ( 1990; ). Polymicrobial bacteremia in the late 1980s: predictors of outcome and review of the literature. Medicine (Baltimore) 69, 114–123.[CrossRef]
    [Google Scholar]
  13. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. ( 1998; ). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298.[CrossRef]
    [Google Scholar]
  14. Doisne, J. M., Becourt, C., Amniai, L., Duarte, N., Le Luduec, J. B., Eberl, G. & Benlagha, K. ( 2009; ). Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor γt+ and respond preferentially under inflammatory conditions. J Immunol 183, 2142–2149.[CrossRef]
    [Google Scholar]
  15. Escobar-Páramo, P., Grenet, K., Le Menac'h, A., Rode, L., Salgado, E., Amorin, C., Gouriou, S., Picard, B., Rahimy, M. C. & other authors ( 2004; ). Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol 70, 5698–5700.[CrossRef]
    [Google Scholar]
  16. Foster, G. L., Barr, T. A., Grant, A. J., McKinley, T. J., Bryant, C. E., MacDonald, A., Gray, D., Yamamoto, M., Akira, S. & other authors ( 2008; ). Virulent Salmonella enterica infections can be exacerbated by concomitant infection of the host with a live attenuated S. enterica vaccine via Toll-like receptor 4-dependent interleukin-10 production with the involvement of both TRIF and MyD88. Immunology 124, 469–479.[CrossRef]
    [Google Scholar]
  17. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. ( 1994; ). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176, 269–275.
    [Google Scholar]
  18. Johnson, J. R., Gajewski, A., Lesse, A. J. & Russo, T. A. ( 2003; ). Extraintestinal pathogenic Escherichia coli as a cause of invasive nonurinary infections. J Clin Microbiol 41, 5798–5802.[CrossRef]
    [Google Scholar]
  19. Johnson, J. R., Clermont, O., Menard, M., Kuskowski, M. A., Picard, B. & Denamur, E. ( 2006; ). Experimental mouse lethality of Escherichia coli isolates, in relation to accessory traits, phylogenetic group, and ecological source. J Infect Dis 194, 1141–1150.[CrossRef]
    [Google Scholar]
  20. Kaper, J. B., Nataro, J. P. & Mobley, H. L. ( 2004; ). Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123–140.[CrossRef]
    [Google Scholar]
  21. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. ( 1999; ). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122.[CrossRef]
    [Google Scholar]
  22. Kosek, M., Bern, C. & Guerrant, R. L. ( 2003; ). The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ 81, 197–204.
    [Google Scholar]
  23. Labat, F., Pradillon, O., Garry, L., Peuchmaur, M., Fantin, B. & Denamur, E. ( 2005; ). Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection pathogenesis. FEMS Immunol Med Microbiol 44, 317–321.[CrossRef]
    [Google Scholar]
  24. Leon, C. G., Tory, R., Jia, J., Sivak, O. & Wasan, K. M. ( 2008; ). Discovery and development of Toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res 25, 1751–1761.[CrossRef]
    [Google Scholar]
  25. Levert, M., Zamfir, O., Clermont, O., Bouvet, O., Lespinats, S., Hipeaux, M. C., Branger, C., Picard, B., Saint-Ruf, C. & other authors ( 2010; ). Molecular and evolutionary bases of within-patient genotypic and phenotypic diversity in Escherichia coli extraintestinal infections. PLoS Pathog 6, e1001125.[CrossRef]
    [Google Scholar]
  26. Link, K. & Orenstein, R. ( 1999; ). Bacterial complications of strongyloidiasis: Streptococcus bovis meningitis. South Med J 92, 728–731.[CrossRef]
    [Google Scholar]
  27. MacFie, J., O'Boyle, C., Mitchell, C. J., Buckley, P. M., Johnstone, D. & Sudworth, P. ( 1999; ). Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 45, 223–228.[CrossRef]
    [Google Scholar]
  28. Moreno, E., Johnson, J. R., Perez, T., Prats, G., Kuskowski, M. A. & Andreu, A. ( 2009; ). Structure and urovirulence characteristics of the fecal Escherichia coli population among healthy women. Microbes Infect 11, 274–280.[CrossRef]
    [Google Scholar]
  29. Nazli, A., Yang, P. C., Jury, J., Howe, K., Watson, J. L., Soderholm, J. D., Sherman, P. M., Perdue, M. H. & McKay, D. M. ( 2004; ). Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol 164, 947–957.[CrossRef]
    [Google Scholar]
  30. Parrillo, J. E., Parker, M. M., Natanson, C., Suffredini, A. F., Danner, R. L., Cunnion, R. E. & Ognibene, F. P. ( 1990; ). Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113, 227–242.[CrossRef]
    [Google Scholar]
  31. Parsek, M. R. & Greenberg, E. P. ( 2005; ). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13, 27–33.[CrossRef]
    [Google Scholar]
  32. Passador, L., Cook, J. M., Gambello, M. J., Rust, L. & Iglewski, B. H. ( 1993; ). Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260, 1127–1130.[CrossRef]
    [Google Scholar]
  33. Picard, B., Garcia, J. S., Gouriou, S., Duriez, P., Brahimi, N., Bingen, E., Elion, J. & Denamur, E. ( 1999; ). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67, 546–553.
    [Google Scholar]
  34. Pinheiro da Silva, F., Aloulou, M., Skurnik, D., Benhamou, M., Andremont, A., Velasco, I. T., Chiamolera, M., Verbeek, J. S., Launay, P. & Monteiro, R. C. ( 2007; ). CD16 promotes Escherichia coli sepsis through an FcRγ inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nat Med 13, 1368–1374.[CrossRef]
    [Google Scholar]
  35. Pittet, D., Li, N. & Wenzel, R. P. ( 1993; ). Association of secondary and polymicrobial nosocomial bloodstream infections with higher mortality. Eur J Clin Microbiol Infect Dis 12, 813–819.[CrossRef]
    [Google Scholar]
  36. Reddy, B. S., MacFie, J., Gatt, M., Macfarlane-Smith, L., Bitzopoulou, K. & Snelling, A. M. ( 2007; ). Commensal bacteria do translocate across the intestinal barrier in surgical patients. Clin Nutr 26, 208–215.[CrossRef]
    [Google Scholar]
  37. Roux, D., Gaudry, S., Dreyfuss, D., El-Benna, J., de Prost, N., Denamur, E., Saumon, G. & Ricard, J. D. ( 2009; ). Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat. Crit Care Med 37, 1062–1067.[CrossRef]
    [Google Scholar]
  38. Russo, T. A. & Johnson, J. R. ( 2003; ). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5, 449–456.[CrossRef]
    [Google Scholar]
  39. Sansonetti, P. J. ( 2006; ). The innate signaling of dangers and the dangers of innate signaling. Nat Immunol 7, 1237–1242.[CrossRef]
    [Google Scholar]
  40. Somerville, J. E., Jr, Cassiano, L., Bainbridge, B., Cunningham, M. D. & Darveau, R. P. ( 1996; ). A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. J Clin Invest 97, 359–365.[CrossRef]
    [Google Scholar]
  41. Sriskandan, S. & Altmann, D. M. ( 2008; ). The immunology of sepsis. J Pathol 214, 211–223.[CrossRef]
    [Google Scholar]
  42. Stammers, A. F. ( 1944; ). Vincent's infection: observation and conclusions regarding the aetiology and treatment of 1017 civilian cases. Br Dent J 76, 147–152.
    [Google Scholar]
  43. Sun, K. & Metzger, D. W. ( 2008; ). Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat Med 14, 558–564.[CrossRef]
    [Google Scholar]
  44. Takeda, K., Kaisho, T. & Akira, S. ( 2003; ). Toll-like receptors. Annu Rev Immunol 21, 335–376.[CrossRef]
    [Google Scholar]
  45. Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. ( 2010; ). The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8, 207–217.[CrossRef]
    [Google Scholar]
  46. Wang, H. & Ma, S. ( 2008; ). The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med 26, 711–715.[CrossRef]
    [Google Scholar]
  47. Wendt, C., Messer, S. A., Hollis, R. J., Pfaller, M. A. & Herwaldt, L. A. ( 1998; ). Epidemiology of polyclonal Gram-negative bacteremia. Diagn Microbiol Infect Dis 32, 9–13.[CrossRef]
    [Google Scholar]
  48. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. ( 2006; ). Social evolution theory for microorganisms. Nat Rev Microbiol 4, 597–607.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037416-0
Loading
/content/journal/micro/10.1099/mic.0.037416-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error