-
Volume 159,
Issue Pt_5,
2013
Volume 159, Issue Pt_5, 2013
- Review
-
-
-
Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: State of the art
More LessPlants are host to a large amount of pathogenic bacteria. Fire blight, caused by the bacterium Erwinia amylovora, is an important disease in Rosaceae. Pathogenicity of E. amylovora is greatly influenced by the production of exopolysaccharides, such as amylovoran, and the use of the type III secretion system, which enables bacteria to penetrate host tissue and cause disease. When infection takes place, plants have to rely on the ability of each cell to recognize the pathogen and the signals emanating from the infection site in order to generate several defence mechanisms. These mechanisms consist of physical barriers and the production of antimicrobial components, both in a preformed and an inducible manner. Inducible defence responses are activated upon the recognition of elicitor molecules by plant cell receptors, either derived from invading micro-organisms or from pathogen-induced degradation of plant tissue. This recognition event triggers a signal transduction cascade, leading to a range of defence responses [reactive oxygen species (ROS), plant hormones, secondary metabolites, …] and redeployment of cellular energy in a fast, efficient and multiresponsive manner, which prevents further pathogen ingress. This review highlights the research that has been performed during recent years regarding this specific plant–pathogen interaction between Erwinia amylovora and Rosaceae, with a special emphasis on the pathogenicity and the infection strategy of E. amylovora and the possible defence mechanisms of the plant against this disease.
-
-
-
-
Bacterial chitinases and chitin-binding proteins as virulence factors
Bacterial chitinases (EC 3.2.1.14) and chitin-binding proteins (CBPs) play a fundamental role in the degradation of the ubiquitous biopolymer chitin, and the degradation products serve as an important nutrient source for marine- and soil-dwelling bacteria. However, it has recently become clear that representatives of both Gram-positive and Gram-negative bacterial pathogens encode chitinases and CBPs that support infection of non-chitinous mammalian hosts. This review addresses this biological role of bacterial chitinases and CBPs in terms of substrate specificities, regulation, secretion and involvement in cellular and animal infection.
-
- Cell and Molecular Biology of Microbes
-
-
-
Flow cytometry as a novel tool for structural and functional characterization of isolated yeast vacuoles
The yeast vacuole is functionally analogous to the mammalian lysosome. Both play important roles in fundamental cellular processes such as protein degradation, detoxification, osmoregulation, autophagy and apoptosis which, when deregulated in humans, can lead to several diseases. Some of these vacuolar roles are difficult to study in a cellular context, and therefore the use of a cell-free system is an important approach to gain further insight into the different molecular mechanisms required for vacuolar function. In the present study, the potentialities of flow cytometry for the structural and functional characterization of isolated yeast vacuoles were explored. The isolation protocol resulted in a yeast vacuolar fraction with a degree of purity suitable for cytometric analysis. Moreover, isolated vacuoles were structurally and functionally intact and able to generate and maintain electrochemical gradients of ions across the vacuolar membrane, as assessed by flow cytometry. Proton and calcium gradients were dissipated by NH4Cl and calcimycin, respectively. These results established flow cytometry as a powerful technique for the characterization of isolated vacuoles. The protocols developed in this study can also be used to enhance our understanding of several molecular mechanisms underlying the development of lysosome-related diseases, as well as provide tools to screen for new drugs that can modulate these processes, which have promising clinical relevance.
-
-
-
-
Ustilago maydis phosphodiesterases play a role in the dimorphic switch and in pathogenicity
Components of the cAMP (cyclic AMP) signalling cascades are conserved from fungi to humans, and are particularly important for fungal dimorphism and pathogenicity. Previous work has described two phosphodiesterases, UmPde1 and UmPde2, in Ustilago maydis which show strong phosphodiesterase activity. We further characterized the biological function(s) of these phosphodiesterases in U. maydis. Specifically, we examined their possible role(s) in regulation of the cAMP-dependent protein kinase A (PKA) pathway and their roles in filamentous growth and pathogenicity. We found that UmPde1, which shares 35 % similarity with Cryptococcus neoformans Pde1, also displays functional homology with this enzyme. UmPde1 complements the capsule-formation defect of C. neoformans strains deleted for Pde1. In U. maydis, the cell morphology of the umpde1 deletion mutant resembled the multiple budding phenotypes seen with the ubc1 mutant, which lacks the regulatory subunit of PKA. Interestingly, on low-ammonium medium, umpde2 deletion strains showed a reduction in filamentation that was comparable to that of ubc1 deletion strains; however, umpde1 deletion strains showed normal filamentation on low-ammonium medium. Furthermore, both the ubc1 deletion strain in which the PKA pathway was constitutively active and the umpde1 deletion strains were significantly reduced in pathogenicity, while the umpde2 deletion strains showed a trend for reduced pathogenicity compared with wild-type strains. These data support a role for the phosphodiesterases UmPde1 and UmPde2 in regulating the U. maydis cAMP-dependent PKA pathway through modulation of cAMP levels, thus affecting dimorphic growth and pathogenicity.
-
-
-
Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica
More LessThe signalling molecule bis-(3′–5′)-cyclic-dimeric guanosine monophosphate (c-di-GMP) is a central regulator of diverse cellular functions, including motility, biofilm formation, cell cycle progression and virulence, in bacteria. Multiple diguanylate cyclase and phosphodiesterase-domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) modulate the levels of the second messenger c-di-GMP to transmit signals and obtain such specific cellular responses. In the genus Bordetella this c-di-GMP network is poorly studied. In this work, we evaluated the expression of two phenotypes in Bordetella bronchiseptica regulated by c-di-GMP, biofilm formation and motility, under the influence of ectopic expression of Pseudomonas aeruginosa proteins with EAL or GGDEF domains that regulates the c-di-GMP level. In agreement with previous reports for other bacteria, we observed that B. bronchiseptica is able to form biofilm and reduce its motility only when GGDEF domain protein is expressed. Moreover we identify a GGDEF domain protein (BB3576) with diguanylate cyclase activity that participates in motility and biofilm regulation in B. bronchiseptica. These results demonstrate for the first time, to our knowledge, the presence of c-di-GMP regulatory signalling in B. bronchiseptica.
-
-
-
Novel function assignment to a member of the essential HP1043 response regulator family of epsilon-proteobacteria
HP1043 of Helicobacter pylori is an orphan response regulator (RR) with a highly degenerate receiver sequence incapable of phosphorylation, which is essential for cell viability. In contrast, the orthologous RR protein of Helicobacter pullorum, an enterohepatic Helicobacter species mainly isolated from poultry, harbours a consensus receiver sequence and is associated with a cognate histidine kinase (HK). Here, we show that this two-component system of H. pullorum, denoted HPMG439/HPMG440, is involved in the control of nitrogen metabolism by regulating the expression of glutamate dehydrogenase, an AmtB ammonium transporter and a PII protein. However, the role of the RR HPMG439 is not restricted to nitrogen regulation since, in contrast with the HK HPMG440, HPMG439 is essential for growth of H. pullorum under nutrient-rich conditions.
-
-
-
Non-sporulating ftsZ mutants in Streptomyces coelicolor reveal amino acid residues critical for FtsZ polymerization dynamics
During sporulation of Streptomyces coelicolor, the cytokinetic protein FtsZ is assembled into dozens of regularly spaced Z rings, which orchestrate the division of aerial hyphae into spores. We have previously found that a missense allele of ftsZ, ftsZ17(Spo), primarily affects sporulation septation rather than formation of cross-walls in vegetative mycelium. To clarify what aspect of FtsZ function is compromised in such non-sporulating mutants, we here use a genetic strategy to identify new ftsZ(Spo) alleles and describe how some of the mutations affect the biochemical properties of FtsZ. We have established a system for purification of recombinant untagged S. coelicolor FtsZ, and shown that it assembles dynamically into single protofilaments, displays a critical concentration indicative of cooperative assembly and has a rate of GTP hydrolysis that is substantially higher than that of the closely related Mycobacterium tuberculosis FtsZ. Of the nine isolated ftsZ(Spo) mutations, four affect the interface between the two main subdomains of FtsZ that is implicated in the assembly-induced conformational changes thought to mediate the GTP/GDP-driven cooperative assembly of FtsZ. We find that all these four mutations affect the polymerization behaviour of FtsZ in vitro. In addition, at least one ftsZ(Spo) mutation at the longitudinal contact surface between subunits in protofilaments strongly affects formation of polymers in vitro. We conclude that the assembly of Z rings during sporulation of S. coelicolor is highly sensitive to disturbances of FtsZ polymerization and therefore constitutes an excellent system for analysis of the elusive properties of FtsZ that mediate its characteristic polymerization dynamics.
-
- Environmental and Evolutionary Microbiology
-
-
-
Prevention of aflatoxin contamination by a soil bacterium of Stenotrophomonas sp. that produces aflatoxin production inhibitors
A soil bacterium, designated strain no. 27, was found to produce aflatoxin-production inhibitors. The strain was identified as a species of the genus Stenotrophomonas, and was found to be closely related to Stenotrophomonas rhizophila. Two diketopiperazines, cyclo(l-Ala–l-Pro) and cyclo(l-Val–l-Pro), were isolated from the bacterial culture filtrate as main active components. These compounds inhibited aflatoxin production of Aspergillus parasiticus and Aspergillus flavus in liquid medium at concentrations of several hundred µM without affecting fungal growth. Both inhibitors inhibited production of norsorolinic acid, a biosynthetic intermediate involved in an early step of the aflatoxin biosynthetic pathway, and reduced the mRNA level of aflR, which is a gene encoding a key regulatory protein necessary for the expression of aflatoxin-biosynthetic enzymes. These results indicated that the inhibitors targets are present in early regulatory steps leading to AflR expression. Co-culture of strain no. 27 with aflatoxigenic fungi in liquid medium effectively suppressed aflatoxin production of the fungus without affecting fungal growth. Furthermore, application of the bacterial cells to peanuts in laboratory experiments and at a farmer’s warehouse in Thailand by dipping peanuts in the bacterial cell suspension strongly inhibited aflatoxin accumulation. The inhibitory effect was dependent on bacterial cell numbers. These results indicated that strain no. 27 may be a practically effective biocontrol agent for aflatoxin control.
-
-
- Genes and Genomes
-
-
-
Identification and characterization of Rv0494: a fatty acid-responsive protein of the GntR/FadR family from Mycobacterium tuberculosis
Escherichia coli FadR, a member of the GntR family of transcription factors, plays dual roles in fatty acid metabolism. FadR–DNA binding is inhibited by fatty acyl-CoAs, and thus FadR acts as a sensor of the fatty acid level in bacteria. We have identified FadR-binding sites in the upstream regions of genes showing altered expression after the disruption of fatty acid biosynthesis in Mycobacterium tuberculosis. A FadR homologue in M. tuberculosis, Rv0494, was identified, which binds to its operator in the upstream region of the kas operon. We have shown that FadRMt (Rv0494) directly binds to long-chain fatty acyl-CoA and that binding quenches the intrinsic fluorescence of the purified protein. FadR–DNA binding can be impaired by long-chain fatty acyl-CoA compounds. Overexpression of Rv0494 in Mycobacterium bovis BCG reduced the basal level expression of kas operon genes, thereby suggesting the repressor nature of this protein in fatty acid synthase II regulation. This is the first report, to the best of our knowledge, of a GntR/FadR family protein acting as a fatty acid-responsive transcriptional regulator in M. tuberculosis, suggesting a possible role for this protein in mycolic acid biosynthesis.
-
-
- Microbial Pathogenicity
-
-
-
Endemic Malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1
Various species of the plant genus Dalbergia are traditionally used as medicine for sundry ailments and some of them have been shown recently to quench the virulence of Gram-positive and Gram-negative bacteria. Cell-to-cell communication mechanisms, quorum sensing (QS) in particular, are key regulators of virulence in many pathogenic bacteria. Screening n-hexane extracts of leaves, roots and bark of endemic Malagasy Dalbergia species for their capacity to antagonize QS mechanisms in Pseudomonas aeruginosa PAO1 showed that many reduced the expression of the QS-regulated genes lasB and rhlA. However, only the extract of Dalbergia trichocarpa bark (DTB) showed a significant reduction of QS gene expression without any effect on the aceA gene encoding a QS-independent isocitrate lyase. Further characterization of DTB impact on QS revealed that the QS systems las and rhl are inhibited and that swarming, twitching, biofilm formation and the production of pyocyanin, elastase and proteases are also hampered in the presence of the DTB extract. Importantly, compared with the known QS inhibitor naringenin, the DTB extract showed a stronger negative effect on twitching, biofilm formation and tobramycin resistance. Preliminary structural characterization of these potent biofilm disrupters suggests that they belong to the phytosterols. The strong inhibition of motility and biofilm formation suggests that the DTB extract contains agents disrupting biofilm architecture, which is an important observation in the context of the design of new drugs targeting biofilm-encapsulated pathogens.
-
-
-
-
Visualization analysis of the vacuole-targeting fungicidal activity of amphotericin B against the parent strain and an ergosterol-less mutant of Saccharomyces cerevisiae
More LessHere, we sought to investigate the vacuole-targeting fungicidal activity of amphotericin B (AmB) in the parent strain and AmB-resistant mutant of Saccharomyces cerevisiae and elucidate the mechanisms involved in this process. Our data demonstrated that the vacuole-targeting fungicidal activity of AmB was markedly enhanced by N-methyl-N″-dodecylguanidine (MC12), a synthetic analogue of the alkyl side chain in niphimycin, as represented by the synergy in their antifungal activities against parent cells of S. cerevisiae. Indifference was observed only with Δerg3 cells, indicating that the replacement of ergosterol with episterol facilitated their resistance to the combined lethal actions of AmB and MC12. Dansyl-labelled amphotericin B (AmB-Ds) was concentrated into normal rounded vacuoles when parent cells were treated with AmB-Ds alone, even at a non-lethal concentration. The additional supplementation of MC12 resulted in a marked loss of cell viability and vacuole disruption, as judged by the fluorescence from AmB-Ds scattered throughout the cytoplasm. In Δerg3 cells, AmB-Ds was scarcely detected in the cytoplasm, even with the addition of MC12, reflecting its failure to normally incorporate across the plasma membrane into the vacuole. Thus, this study supported the hypothesis that ergosterol is involved in the mobilization of AmB into the vacuolar membrane so that AmB-dependent vacuole disruption can be fully enhanced by cotreatment with MC12.
-
- Physiology and Biochemistry
-
-
-
Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence
Cyanobacteria have been shown to have a circadian clock system that consists mainly of three protein components: KaiA, KaiB and KaiC. This system is well understood in the cyanobacterium Synechococcus elongatus PCC 7942, for which robust circadian oscillations have been shown. Like many other cyanobacteria, the chromosome of the model cyanobacterium Synechocystis sp. PCC 6803 contains additional kaiC and kaiB gene copies besides the standard kaiABC gene cluster. The respective gene products differ significantly in their amino acid sequences, especially in their C-terminal regions, suggesting different functional characteristics. Here, phosphorylation assays of the three Synechocystis sp. PCC 6803 KaiC proteins revealed that KaiC1 phosphorylation depends on KaiA, as is well documented for the Synechococcus elongatus PCC 7942 KaiC protein, whereas KaiC2 and KaiC3 autophosphorylate independently of KaiA. This was confirmed by in vivo protein–protein interaction studies, which demonstrate that only KaiC1 interacts with KaiA. Furthermore, we demonstrate that the three different Kai proteins form only homomeric complexes in vivo. As only KaiC1 phosphorylation depends on KaiA, a prerequisite for robust oscillations, we suggest that the kaiAB1C1 gene cluster in Synechocystis sp. PCC 6803 controls circadian timing in a manner similar to the clock described in Synechococcus elongatus PCC 7942.
-
-
-
-
The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production
More LessPseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes infections in the lungs of individuals with the genetic disease cystic fibrosis. Density-dependent production of toxic factors regulated by the Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) have been proposed to be involved in P. aeruginosa virulence. PQS biosynthesis requires conversion of the central metabolite chorismate to anthranilate by anthranilate synthase. This reaction is also the first step in tryptophan biosynthesis. P. aeruginosa possesses two functional anthranilate synthases, TrpEG and PhnAB, and these enzymes are not functionally redundant, as trpEG mutants are tryptophan auxotrophs but produce PQS while mutants in phnAB are tryptophan prototrophs but do not produce PQS in minimal media. The goal of the work described in this paper was to determine the mechanism for this lack of functional complementation of TrpEG and PhnAB. Our results reveal that overexpression of either enzyme compensates for tryptophan auxotrophy and PQS production in the trpEG and phnAB mutants respectively, leading to the hypothesis that differential regulation of these genes is responsible for the lack of functional complementation. In support of this hypothesis, trpEG was shown to be expressed primarily during low-density growth while phnAB was expressed primarily at high density. Furthermore, dysregulation of phnAB expression eliminated tryptophan auxotrophy in the P. aeruginosa trpEG mutant. Based on these data, we propose a model for anthranilate sequestration by differential transcriptional regulation of the two P. aeruginosa anthranilate synthase enzymes.
-
-
-
Hyperactive and hypoactive mutations in Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit
More LessThe yeast Saccharomyces cerevisiae CCH1 gene encodes a homologue of the pore-forming α1 subunit of mammalian voltage-gated calcium channels. Cch1 cooperates with Mid1, a candidate for a putative, functional homologue of the mammalian regulatory subunit α2/δ, and is essential for Ca2+ influx induced by several stimuli. Here, we characterized two mutant alleles of CCH1, CCH1* (or CCH1-star, carrying four point mutations: V49A, N1066D, Y1145H and N1330S) and cch1-2 (formerly designated mid3-2). The product of CCH1* displayed a marked increase in Ca2+ uptake activity in the presence and absence of α-factor, and its increased activity was still dependent on Mid1. Mutations in CCH1* did not affect its susceptibility to regulation by calcineurin. In addition, not only was the N1066D mutation in the cytoplasmic loop between domains II and III responsible for the increased activity of Cch1*, but also substitution of another negatively charged amino acid Glu for Asn1066 resulted in a significant increase in the Ca2+ uptake activity of Cch1. This is the first report of a hyperactive mutation in Cch1. On the other hand, the cch1-2 allele possesses the P1228L mutation located in the extracellular S1–S2 linker of domain III. The Pro1228 residue is highly conserved from fungi to humans, and the P1228L mutation led to a partial loss in Cch1 function, but did not affect the localization and expression of Cch1. The results extend our understanding of the structure–function relationship and functional regulation of Cch1.
-
-
-
Characterization of an antimicrobial peptide produced by Bacillus subtilis subsp. spizezinii showing inhibitory activity towards Haemophilus parasuis
More LessHaemophilus parasuis is the pathogen that causes Glässer’s disease, a major illness affecting young pigs. The aim of this work was to investigate the antagonistic activity of antimicrobial substances produced by Bacillus species against H. parasuis. Among the tested strains, only Bacillus subtilis ATCC 6633 inhibited H. parasuis growth. The antibacterial substance was purified by ammonium sulfate precipitation, gel filtration chromatography on Sephadex G-50 and ion-exchange chromatography on DEAE-cellulose. The purification was about 100-fold with a yield of 0.33 %. The purified substance was resistant up to 80 °C and pH ranging 3–7, but the substance lost its activity when it was treated with proteases. The peptide had a molecular mass of 1083 Da and its sequence was determined by MS as NRWCFAGDD, which showed no homology with other known antimicrobial peptides. The complete inhibition of H. parasuis growth was observed at 20 µg peptide ml−1 after 20 min of exposure. The peptide obtained by chemical synthesis also showed antimicrobial activity on H. parasuis. The identification of antimicrobial substances that can be effective against H. parasuis is very relevant to combat this pathogen that causes important losses in swine production.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
