1887

Abstract

During sporulation of , the cytokinetic protein FtsZ is assembled into dozens of regularly spaced Z rings, which orchestrate the division of aerial hyphae into spores. We have previously found that a missense allele of , (Spo), primarily affects sporulation septation rather than formation of cross-walls in vegetative mycelium. To clarify what aspect of FtsZ function is compromised in such non-sporulating mutants, we here use a genetic strategy to identify new (Spo) alleles and describe how some of the mutations affect the biochemical properties of FtsZ. We have established a system for purification of recombinant untagged FtsZ, and shown that it assembles dynamically into single protofilaments, displays a critical concentration indicative of cooperative assembly and has a rate of GTP hydrolysis that is substantially higher than that of the closely related FtsZ. Of the nine isolated (Spo) mutations, four affect the interface between the two main subdomains of FtsZ that is implicated in the assembly-induced conformational changes thought to mediate the GTP/GDP-driven cooperative assembly of FtsZ. We find that all these four mutations affect the polymerization behaviour of FtsZ . In addition, at least one (Spo) mutation at the longitudinal contact surface between subunits in protofilaments strongly affects formation of polymers . We conclude that the assembly of Z rings during sporulation of is highly sensitive to disturbances of FtsZ polymerization and therefore constitutes an excellent system for analysis of the elusive properties of FtsZ that mediate its characteristic polymerization dynamics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066480-0
2013-05-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/890.html?itemId=/content/journal/micro/10.1099/mic.0.066480-0&mimeType=html&fmt=ahah

References

  1. Adams D. W., Errington J..( 2009;). Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol7:642–653 [CrossRef][PubMed]
    [Google Scholar]
  2. Addinall S. G., Small E., Whitaker D., Sturrock S., Donachie W. D., Khattar M. M..( 2005;). New temperature-sensitive alleles of ftsZ in Escherichia coli. J Bacteriol187:358–365 [CrossRef][PubMed]
    [Google Scholar]
  3. Andreu J. M., Schaffner-Barbero C., Huecas S., Alonso D., Lopez-Rodriguez M. L., Ruiz-Avila L. B., Núñez-Ramírez R., Llorca O., Martín-Galiano A. J..( 2010;). The antibacterial cell division inhibitor PC190723 is an FtsZ polymer-stabilizing agent that induces filament assembly and condensation. J Biol Chem285:14239–14246 [CrossRef][PubMed]
    [Google Scholar]
  4. Aylett C. H., Löwe J., Amos L. A..( 2011;). New insights into the mechanisms of cytomotive actin and tubulin filaments. Int Rev Cell Mol Biol292:1–71 [CrossRef][PubMed]
    [Google Scholar]
  5. Bennett J. A., Yarnall J., Cadwallader A. B., Kuennen R., Bidey P., Stadelmaier B., McCormick J. R..( 2009;). Medium-dependent phenotypes of Streptomyces coelicolor with mutations in ftsI or ftsW. J Bacteriol191:661–664 [CrossRef][PubMed]
    [Google Scholar]
  6. Buske P. J., Levin P. A..( 2012;). Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. J Biol Chem287:10945–10957 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Y., Erickson H. P..( 2005;). Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J Biol Chem280:22549–22554 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Y., Erickson H. P..( 2011;). Conformational changes of FtsZ reported by tryptophan mutants. Biochemistry50:4675–4684 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen Y., Bjornson K., Redick S. D., Erickson H. P..( 2005;). A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys J88:505–514 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen Y., Anderson D. E., Rajagopalan M., Erickson H. P..( 2007;). Assembly dynamics of Mycobacterium tuberculosis FtsZ. J Biol Chem282:27736–27743 [CrossRef][PubMed]
    [Google Scholar]
  11. Datta P., Dasgupta A., Singh A. K., Mukherjee P., Kundu M., Basu J..( 2006;). Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol62:1655–1673 [CrossRef][PubMed]
    [Google Scholar]
  12. de Boer P. A..( 2010;). Advances in understanding E. coli cell fission. Curr Opin Microbiol13:730–737 [CrossRef][PubMed]
    [Google Scholar]
  13. Del Sol R., Mullins J. G., Grantcharova N., Flärdh K., Dyson P..( 2006;). Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol188:1540–1550 [CrossRef][PubMed]
    [Google Scholar]
  14. Din N., Quardokus E. M., Sackett M. J., Brun Y. V..( 1998;). Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol Microbiol27:1051–1063 [CrossRef][PubMed]
    [Google Scholar]
  15. Elsen N. L., Lu J., Parthasarathy G., Reid J. C., Sharma S., Soisson S. M., Lumb K. J..( 2012;). Mechanism of action of the cell-division inhibitor PC190723: modulation of FtsZ assembly cooperativity. J Am Chem Soc134:12342–12345 [CrossRef][PubMed]
    [Google Scholar]
  16. Erickson H. P., Anderson D. E., Osawa M..( 2010;). FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev74:504–528 [CrossRef][PubMed]
    [Google Scholar]
  17. Feucht A., Errington J..( 2005;). ftsZ mutations affecting cell division frequency, placement and morphology in Bacillus subtilis. Microbiology151:2053–2064 [CrossRef][PubMed]
    [Google Scholar]
  18. Flärdh K..( 2003;). Growth polarity and cell division in Streptomyces. Curr Opin Microbiol6:564–571 [CrossRef][PubMed]
    [Google Scholar]
  19. Flärdh K., Buttner M. J..( 2009;). Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol7:36–49 [CrossRef][PubMed]
    [Google Scholar]
  20. Flärdh K., Leibovitz E., Buttner M. J., Chater K. F..( 2000;). Generation of a non-sporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter. Mol Microbiol38:737–749 [CrossRef][PubMed]
    [Google Scholar]
  21. Galli E., Gerdes K..( 2010;). Spatial resolution of two bacterial cell division proteins: ZapA recruits ZapB to the inner face of the Z-ring. Mol Microbiol76:1514–1526 [CrossRef][PubMed]
    [Google Scholar]
  22. Grantcharova N., Ubhayasekera W., Mowbray S. L., McCormick J. R., Flärdh K..( 2003;). A missense mutation in ftsZ differentially affects vegetative and developmentally controlled cell division in Streptomyces coelicolor A3(2). Mol Microbiol47:645–656 [CrossRef][PubMed]
    [Google Scholar]
  23. Grantcharova N., Lustig U., Flärdh K..( 2005;). Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2). J Bacteriol187:3227–3237 [CrossRef][PubMed]
    [Google Scholar]
  24. Hale C. A., de Boer P. A. J..( 1997;). Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell88:175–185 [CrossRef][PubMed]
    [Google Scholar]
  25. Hanahan D..( 1983;). Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  26. Haney S. A., Glasfeld E., Hale C., Keeney D., He Z., de Boer P..( 2001;). Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J Biol Chem276:11980–11987 [CrossRef][PubMed]
    [Google Scholar]
  27. Haydon D. J., Stokes N. R., Ure R., Galbraith G., Bennett J. M., Brown D. R., Baker P. J., Barynin V. V., Rice D. W. et al.( 2008;). An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science321:1673–1675 [CrossRef][PubMed]
    [Google Scholar]
  28. Jakimowicz D., van Wezel G. P..( 2012;). Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere?. Mol Microbiol85:393–404 [CrossRef][PubMed]
    [Google Scholar]
  29. Jones T. A., Zou J.-Y., Cowan S. W., Kjeldgaard M..( 1991;). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A47:110–119 [CrossRef][PubMed]
    [Google Scholar]
  30. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A..( 2000;). Practical Streptomyces Genetics Norwich, UK: The John Innes Foundation;
    [Google Scholar]
  31. Kleywegt G. J., Zou J. Y., Kjeldgaard M., Jones T. A..( 2001;). Around O. International Tables for Crystallography353–356 Rossmann M. G., Arnold E.. Dordrecht: Kluwer;
    [Google Scholar]
  32. Leung A. K., Lucile White E., Ross L. J., Reynolds R. C., DeVito J. A., Borhani D. W..( 2004;). Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches. J Mol Biol342:953–970 [CrossRef][PubMed]
    [Google Scholar]
  33. Löwe J., Amos L. A..( 1998;). Crystal structure of the bacterial cell-division protein FtsZ. Nature391:203–206 [CrossRef][PubMed]
    [Google Scholar]
  34. Lutkenhaus J., Pichoff S., Du S..( 2012;). Bacterial cytokinesis: From Z ring to divisome. Cytoskeleton (Hoboken)69:778–790 [CrossRef][PubMed]
    [Google Scholar]
  35. Ma X., Margolin W..( 1999;). Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol181:7531–7544[PubMed]
    [Google Scholar]
  36. Martín-Galiano A. J., Buey R. M., Cabezas M., Andreu J. M..( 2010;). Mapping flexibility and the assembly switch of cell division protein FtsZ by computational and mutational approaches. J Biol Chem285:22554–22565 [CrossRef][PubMed]
    [Google Scholar]
  37. McCormick J. R..( 2009;). Cell division is dispensable but not irrelevant in Streptomyces. Curr Opin Microbiol12:689–698 [CrossRef][PubMed]
    [Google Scholar]
  38. McCormick J. R., Flärdh K..( 2012;). Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev36:206–231 [CrossRef][PubMed]
    [Google Scholar]
  39. McCormick J. R., Su E. P., Driks A., Losick R..( 1994;). Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol Microbiol14:243–254 [CrossRef][PubMed]
    [Google Scholar]
  40. Mistry B. V., Del Sol R., Wright C., Findlay K., Dyson P..( 2008;). FtsW is a dispensable cell division protein required for Z-ring stabilization during sporulation septation in Streptomyces coelicolor. J Bacteriol190:5555–5566 [CrossRef][PubMed]
    [Google Scholar]
  41. Mosyak L., Zhang Y., Glasfeld E., Haney S., Stahl M., Seehra J., Somers W. S..( 2000;). The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J19:3179–3191 [CrossRef][PubMed]
    [Google Scholar]
  42. Oliva M. A., Cordell S. C., Löwe J..( 2004;). Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol11:1243–1250 [CrossRef][PubMed]
    [Google Scholar]
  43. Oliva M. A., Trambaiolo D., Löwe J..( 2007;). Structural insights into the conformational variability of FtsZ. J Mol Biol373:1229–1242 [CrossRef][PubMed]
    [Google Scholar]
  44. Pichoff S., Lutkenhaus J..( 2005;). Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol55:1722–1734 [CrossRef][PubMed]
    [Google Scholar]
  45. Plocinski P., Ziolkiewicz M., Kiran M., Vadrevu S. I., Nguyen H. B., Hugonnet J., Veckerle C., Arthur M., Dziadek J. et al.( 2011;). Characterization of CrgA, a new partner of the Mycobacterium tuberculosis peptidoglycan polymerization complexes. J Bacteriol193:3246–3256 [CrossRef][PubMed]
    [Google Scholar]
  46. Sambrook J., Russel D. W..( 2001;). Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  47. Schwedock J., McCormick J. R., Angert E. R., Nodwell J. R., Losick R..( 1997;). Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol Microbiol25:847–858 [CrossRef][PubMed]
    [Google Scholar]
  48. Shen B., Lutkenhaus J..( 2009;). The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinCC/MinD. Mol Microbiol72:410–424 [CrossRef][PubMed]
    [Google Scholar]
  49. Tan C. M., Therien A. G., Lu J., Lee S. H., Caron A., Gill C. J., Lebeau-Jacob C., Benton-Perdomo L., Monteiro J. M. et al.( 2012;). Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci Transl Med4:26ra35 [CrossRef][PubMed]
    [Google Scholar]
  50. Wang Y., Jones B. D., Brun Y. V..( 2001;). A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Mol Microbiol40:347–360 [CrossRef][PubMed]
    [Google Scholar]
  51. White E. L., Ross L. J., Reynolds R. C., Seitz L. E., Moore G. D., Borhani D. W..( 2000;). Slow polymerization of Mycobacterium tuberculosis FtsZ. J Bacteriol182:4028–4034 [CrossRef][PubMed]
    [Google Scholar]
  52. Willemse J., Borst J. W., de Waal E., Bisseling T., van Wezel G. P..( 2011;). Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev25:89–99 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066480-0
Loading
/content/journal/micro/10.1099/mic.0.066480-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error