1887

Abstract

is the pathogen that causes Glässer’s disease, a major illness affecting young pigs. The aim of this work was to investigate the antagonistic activity of antimicrobial substances produced by species against . Among the tested strains, only ATCC 6633 inhibited growth. The antibacterial substance was purified by ammonium sulfate precipitation, gel filtration chromatography on Sephadex G-50 and ion-exchange chromatography on DEAE-cellulose. The purification was about 100-fold with a yield of 0.33 %. The purified substance was resistant up to 80 °C and pH ranging 3–7, but the substance lost its activity when it was treated with proteases. The peptide had a molecular mass of 1083 Da and its sequence was determined by MS as NRWCFAGDD, which showed no homology with other known antimicrobial peptides. The complete inhibition of growth was observed at 20 µg peptide ml after 20 min of exposure. The peptide obtained by chemical synthesis also showed antimicrobial activity on . The identification of antimicrobial substances that can be effective against is very relevant to combat this pathogen that causes important losses in swine production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062828-0
2013-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/980.html?itemId=/content/journal/micro/10.1099/mic.0.062828-0&mimeType=html&fmt=ahah

References

  1. Abriouel H., Franz C. M. A. P., Omar N. B., Gálvez A.( 2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232 [View Article][PubMed]
    [Google Scholar]
  2. Anthony T., Rajesh T., Kayalvizhi N., Gunasekaran P.( 2009). Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour Technol 100:872–877 [View Article][PubMed]
    [Google Scholar]
  3. Augustyniak D., Jankowski A., Mackiewicz P., Skowyra A., Gutowicz J., Drulis-Kawa Z.( 2012). Innate immune properties of selected human neuropeptides against Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC Immunol 13:24 [View Article][PubMed]
    [Google Scholar]
  4. Begley M., Cotter P. D., Hill C., Ross R. P.( 2009). Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 75:5451–5460 [View Article][PubMed]
    [Google Scholar]
  5. Benitez L. B., Caumo K., Brandelli A., Rott M. B.( 2011). Bacteriocin-like substance from Bacillus amyloliquefaciens shows remarkable inhibition of Acanthamoeba polyphaga. Parasitol Res 108:687–691 [View Article][PubMed]
    [Google Scholar]
  6. Bizani D., Brandelli A.( 2002). Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. J Appl Microbiol 93:512–519 [View Article][PubMed]
    [Google Scholar]
  7. Bizani D., Dominguez A. P. M., Brandelli A.( 2005). Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett Appl Microbiol 41:269–273 [View Article][PubMed]
    [Google Scholar]
  8. Brogden K. A., De Lucca A. J., Bland J., Elliott S.( 1996). Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc Natl Acad Sci U S A 93:412–416 [View Article][PubMed]
    [Google Scholar]
  9. Dennison S. R., Harris F., Phoenix D. A.( 2005). Are oblique orientated alpha-helices used by antimicrobial peptides for membrane invasion?. Protein Pept Lett 12:27–29 [View Article][PubMed]
    [Google Scholar]
  10. Dupuy F., Morero R.( 2011). Microcin J25 membrane interaction: selectivity toward gel phase. Biochim Biophys Acta 1808:1764–1771 [View Article][PubMed]
    [Google Scholar]
  11. Halimi B., Dortu C., Arguelles-Arias A., Thonart P., Joris B., Fickers P.( 2010). Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiot Antimicrob Proteins 2:120–125 [View Article]
    [Google Scholar]
  12. Hammami I., Rhouma A., Jaouadi B., Rebai A., Nesme X.( 2009). Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett Appl Microbiol 48:253–260 [View Article][PubMed]
    [Google Scholar]
  13. Heinzmann S., Entian K. D., Stein T.( 2006). Engineering Bacillus subtilis ATCC 6633 for improved production of the lantibiotic subtilin. Appl Microbiol Biotechnol 69:532–536 [View Article][PubMed]
    [Google Scholar]
  14. Jeya M., Moon H. J., Lee K. M., Kim I. W., Lee J. K.( 2011). Glycopeptide antibiotics and their novel semi-synthetic derivatives. Curr Pharm Biotechnol 12:1194–1204 [View Article][PubMed]
    [Google Scholar]
  15. Kalchayanand N., Dunne P., Sikes A., Ray B.( 2004). Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins. Int J Food Microbiol 91:91–98 [View Article][PubMed]
    [Google Scholar]
  16. Kalfa V. C., Brogden K. A.( 1999). Anionic antimicrobial peptide-lysozyme interactions in innate pulmonary immunity. Int J Antimicrob Agents 13:47–51 [View Article][PubMed]
    [Google Scholar]
  17. Kamoun F., Mejdoub H., Aouissaoui H., Reinbolt J., Hammami A., Jaoua S.( 2005). Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98:881–888 [View Article][PubMed]
    [Google Scholar]
  18. Kyte J., Doolittle R. F.( 1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [View Article][PubMed]
    [Google Scholar]
  19. Lai R., Lomas L. O., Jonczy J., Turner P. C., Rees H. H.( 2004). Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J 379:681–685 [View Article][PubMed]
    [Google Scholar]
  20. Lisboa M. P., Bonatto D., Bizani D., Henriques J. A. P., Brandelli A.( 2006). Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int Microbiol 9:111–118[PubMed]
    [Google Scholar]
  21. Martínez B., Rodríguez A.( 2005). Antimicrobial susceptibility of nisin resistant Listeria monocytogenes of dairy origin. FEMS Microbiol Lett 252:67–72 [View Article][PubMed]
    [Google Scholar]
  22. Motta A. S., Brandelli A.( 2002). Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–70 [View Article][PubMed]
    [Google Scholar]
  23. Mount K. L. B., Townsend C. A., Bauer M. E.( 2007). Haemophilus ducreyi is resistant to human antimicrobial peptides. Antimicrob Agents Chemother 51:3391–3393 [View Article][PubMed]
    [Google Scholar]
  24. Nedbalcova K., Satran P., Jaglic Z., Ondriasova R., Kucerova Z.( 2006). Haemophilus parasuis and Glässer's disease in pigs: a review. Vet Med 51:168–179
    [Google Scholar]
  25. Olvera A., Segalés J., Aragón V.( 2007). Update on the diagnosis of Haemophilus parasuis infection in pigs and novel genotyping methods. Vet J 174:522–529 [View Article][PubMed]
    [Google Scholar]
  26. Papagianni M., Papamichael E. M.( 2011). Purification, amino acid sequence and characterization of the class IIa bacteriocin weissellin A, produced by Weissella paramesenteroides DX. Bioresour Technol 102:6730–6734 [View Article][PubMed]
    [Google Scholar]
  27. Powers J. P. S., Hancock R. E. W.( 2003). The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691 [View Article][PubMed]
    [Google Scholar]
  28. Ramarathnam R., Bo S., Chen Y., Fernando W. G., Xuewen G., de Kievit T.( 2007). Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911 [View Article][PubMed]
    [Google Scholar]
  29. Rapp-Gabrielson V. J., Oliveira S. R., Pijoan C.( 2006). Haemophilus parasuis. Diseases of Swine, 9th edn.681–690 Straw B. E., Zimmerman J. J., D’Allaire C., Taylor D. J. Ames: Blackwell;
    [Google Scholar]
  30. Riley M. A., Wertz J. E.( 2002). Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364 [View Article][PubMed]
    [Google Scholar]
  31. Rinker S. D., Trombley M. P., Gu X., Fortney K. R., Bauer M. E.( 2011). Deletion of mtrC in Haemophilus ducrey increases sensitivity to human antimicrobial peptides and activates the CpxRA regulon. Infect Immun 79:2324–2334 [View Article][PubMed]
    [Google Scholar]
  32. Roongsawang N., Washio K., Morikawa M.( 2011). Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12:141–172 [View Article][PubMed]
    [Google Scholar]
  33. Shelton C. L., Raffel F. K., Beatty W. L., Johnson S. M., Mason K. M.( 2011). Sap transporter mediated import and subsequent degradation of antimicrobial peptides in Haemophilus. PLoS Pathog 7:e1002360 [View Article][PubMed]
    [Google Scholar]
  34. Soliman W., Wang L., Bhattacharjee S., Kaur K.( 2011). Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins. J Med Chem 54:2399–2408 [View Article][PubMed]
    [Google Scholar]
  35. Sparbier K., Asperger A., Resemann A., Kessler I., Koch S., Wenzel T., Stein G., Vorwerg L., Suckau D., Kostrzewa M.( 2007). Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J Biomol Tech 18:252–258[PubMed]
    [Google Scholar]
  36. Stein T.( 2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857 [View Article][PubMed]
    [Google Scholar]
  37. Stein T.( 2008). Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lantibiotic-producing bacteria. Rapid Commun Mass Spectrom 22:1146–1152 [View Article][PubMed]
    [Google Scholar]
  38. Teixeira M. L., Cladera-Olivera F., dos Santos J., Brandelli A. ( 2009). Purification and characterization of a peptide from Bacillus licheniformis showing dual antimicrobial and emulsifying activities. Food Res Int 42:63–68 [View Article]
    [Google Scholar]
  39. Teixeira M. L., Kuchiishi S., Brandelli A.( 2011). Isolation of Haemophilus parasuis from diagnostic samples in the south of Brazil. Braz J Vet Pathol 4:122–125
    [Google Scholar]
  40. Thévenet P., Shen Y., Maupetit J., Guyon F., Derreumaux P., Tufféry P.( 2012). PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40:Web Server issueW288–W293 [View Article][PubMed]
    [Google Scholar]
  41. Wang Z., Eickholt J., Cheng J.( 2011). APOLLO: a quality assessment service for single and multiple protein models. Bioinformatics 27:1715–1716 [View Article][PubMed]
    [Google Scholar]
  42. Wen H., Lan X., Cheng T., He N., Shiomi K., Kajiura Z., Zhou Z., Xia Q., Xiang Z., Nakagaki M.( 2009). Sequence structure and expression pattern of a novel anionic defensin-like gene from silkworm (Bombyx mori). Mol Biol Rep 36:711–716 [View Article][PubMed]
    [Google Scholar]
  43. Xu Z., Yue M., Zhou R., Jin Q., Fan Y., Bei W., Chen H.( 2011). Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China. PLoS ONE 6:e19631 [View Article][PubMed]
    [Google Scholar]
  44. Zdybicka-Barabas A., Mak P., Klys A., Skrzypiec K., Mendyk E., Fiołka M. J., Cytryńska M.( 2012). Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria. Biochim Biophys Acta 1818:2623–2635 [View Article][PubMed]
    [Google Scholar]
  45. Zhang Y., Skolnick J.( 2004). Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062828-0
Loading
/content/journal/micro/10.1099/mic.0.062828-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error