1887

Abstract

Cyanobacteria have been shown to have a circadian clock system that consists mainly of three protein components: KaiA, KaiB and KaiC. This system is well understood in the cyanobacterium PCC 7942, for which robust circadian oscillations have been shown. Like many other cyanobacteria, the chromosome of the model cyanobacterium sp. PCC 6803 contains additional and gene copies besides the standard gene cluster. The respective gene products differ significantly in their amino acid sequences, especially in their C-terminal regions, suggesting different functional characteristics. Here, phosphorylation assays of the three sp. PCC 6803 KaiC proteins revealed that KaiC1 phosphorylation depends on KaiA, as is well documented for the PCC 7942 KaiC protein, whereas KaiC2 and KaiC3 autophosphorylate independently of KaiA. This was confirmed by protein–protein interaction studies, which demonstrate that only KaiC1 interacts with KaiA. Furthermore, we demonstrate that the three different Kai proteins form only homomeric complexes . As only KaiC1 phosphorylation depends on KaiA, a prerequisite for robust oscillations, we suggest that the gene cluster in sp. PCC 6803 controls circadian timing in a manner similar to the clock described in PCC 7942.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065425-0
2013-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/948.html?itemId=/content/journal/micro/10.1099/mic.0.065425-0&mimeType=html&fmt=ahah

References

  1. Akiyama S. , Nohara A. , Ito K. , Maéda Y. . ( 2008; ). Assembly and disassembly dynamics of the cyanobacterial periodosome. . Mol Cell 29:, 703–716. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aoki S. , Onai K. . ( 2009; ). Circadian clocks of Synechocystis sp. strain PCC 6803, Thermosynechococcus elongatus, Prochlorococcus spp., Trichodesmium spp. and other species. . In Bacterial circadian programs pp. 259–282. Edited by Ditty J. L. , Mackey S. R. , Johnson C. H. . . Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  3. Axmann I. M. , Dühring U. , Seeliger L. , Arnold A. , Vanselow J. T. , Kramer A. , Wilde A. . ( 2009; ). Biochemical evidence for a timing mechanism in Prochlorococcus. . J Bacteriol 191:, 5342–5347. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bensadoun A. , Weinstein D. . ( 1976; ). Assay of proteins in the presence of interfering materials. . Anal Biochem 70:, 241–250. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bradford M. M. . ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. . Anal Biochem 72:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brettschneider C. , Rose R. J. , Hertel S. , Axmann I. M. , Heck A. J. R. , Kollmann M. . ( 2010; ). A sequestration feedback determines dynamics and temperature entrainment of the KaiABC circadian clock. . Mol Syst Biol 6:, 389. [CrossRef] [PubMed]
    [Google Scholar]
  7. Clodong S. , Dühring U. , Kronk L. , Wilde A. , Axmann I. , Herzel H. , Kollmann M. . ( 2007; ). Functioning and robustness of a bacterial circadian clock. . Mol Syst Biol 3:, 90. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dvornyk V. , Knudsen B. . ( 2005; ). Functional divergence of the circadian clock proteins in prokaryotes. . Genetica 124:, 247–255. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dvornyk V. , Vinogradova O. , Nevo E. . ( 2003; ). Origin and evolution of circadian clock genes in prokaryotes. . Proc Natl Acad Sci U S A 100:, 2495–2500. [CrossRef] [PubMed]
    [Google Scholar]
  10. Edgar R. S. , Green E. W. , Zhao Y. , van Ooijen G. , Olmedo M. , Qin X. , Xu Y. , Pan M. , Valekunja U. K. et al. ( 2012; ). Peroxiredoxins are conserved markers of circadian rhythms. . Nature 485:, 459–464.[PubMed]
    [Google Scholar]
  11. Egli M. , Mori T. , Pattanayek R. , Xu Y. , Qin X. , Johnson C. H. . ( 2012; ). Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. . Biochemistry 51:, 1547–1558. [CrossRef] [PubMed]
    [Google Scholar]
  12. Goujon M. , McWilliam H. , Li W. , Valentin F. , Squizzato S. , Paern J. , Lopez R. . ( 2010; ). A new bioinformatics analysis tools framework at EMBL–EBI. . Nucleic Acids Res 38: (Web Server issue), W695–W699. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hayashi F. , Suzuki H. , Iwase R. , Uzumaki T. , Miyake A. , Shen J. R. , Imada K. , Furukawa Y. , Yonekura K. et al. ( 2003; ). ATP-induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC. . Genes Cells 8:, 287–296. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hertel S. , Brettschneider C. , Axmann I. M. . ( 2013; ). Revealing a two-loop transcriptional feedback mechanism in the cyanobacterial circadian clock. . PLOS Comput Biol. ( in press)
    [Google Scholar]
  15. Holtzendorff J. , Partensky F. , Mella D. , Lennon J. F. , Hess W. R. , Garczarek L. . ( 2008; ). Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. . J Biol Rhythms 23:, 187–199. [CrossRef] [PubMed]
    [Google Scholar]
  16. Imai K. , Nishiwaki T. , Kondo T. , Iwasaki H. . ( 2004; ). Circadian rhythms in the synthesis and degradation of a master clock protein KaiC in cyanobacteria. . J Biol Chem 279:, 36534–36539. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ishiura M. , Kutsuna S. , Aoki S. , Iwasaki H. , Andersson C. R. , Tanabe A. , Golden S. S. , Johnson C. H. , Kondo T. . ( 1998; ). Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. . Science 281:, 1519–1523. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ito H. , Mutsuda M. , Murayama Y. , Tomita J. , Hosokawa N. , Terauchi K. , Sugita C. , Sugita M. , Kondo T. , Iwasaki H. . ( 2009; ). Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. . Proc Natl Acad Sci U S A 106:, 14168–14173. [CrossRef] [PubMed]
    [Google Scholar]
  19. Iwasaki H. , Kondo T. . ( 2004; ). Circadian timing mechanism in the prokaryotic clock system of cyanobacteria. . J Biol Rhythms 19:, 436–444. [CrossRef] [PubMed]
    [Google Scholar]
  20. Iwasaki H. , Taniguchi Y. , Ishiura M. , Kondo T. . ( 1999; ). Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. . EMBO J 18:, 1137–1145. [CrossRef] [PubMed]
    [Google Scholar]
  21. Iwasaki H. , Nishiwaki T. , Kitayama Y. , Nakajima M. , Kondo T. . ( 2002; ). KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria. . Proc Natl Acad Sci U S A 99:, 15788–15793. [CrossRef] [PubMed]
    [Google Scholar]
  22. Iwase R. , Imada K. , Hayashi F. , Uzumaki T. , Morishita M. , Onai K. , Furukawa Y. , Namba K. , Ishiura M. . ( 2005; ). Functionally important substructures of circadian clock protein KaiB in a unique tetramer complex. . J Biol Chem 280:, 43141–43149. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;.
    [Google Scholar]
  24. Kim Y.-I. , Dong G. , Carruthers C. W. Jr , Golden S. S. , LiWang A. . ( 2008; ). The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. . Proc Natl Acad Sci U S A 105:, 12825–12830. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kitayama Y. , Iwasaki H. , Nishiwaki T. , Kondo T. . ( 2003; ). KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. . EMBO J 22:, 2127–2134. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kuchmina E. , Wallner T. , Kryazhov S. , Zinchenko V. V. , Wilde A. . ( 2012; ). An expression system for regulated protein production in Synechocystis sp. PCC 6803 and its application for construction of a conditional knockout of the ferrochelatase enzyme. . J Biotechnol 162:, 75–80. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kucho K.-i. , Okamoto K. , Tsuchiya Y. , Nomura S. , Nango M. , Kanehisa M. , Ishiura M. . ( 2005; ). Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. . J Bacteriol 187:, 2190–2199. [CrossRef] [PubMed]
    [Google Scholar]
  28. Laemmli U. K. . ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lowry O. H. , Rosebrough N. J. , Farr A. L. , Randall R. J. . ( 1951; ). Protein measurement with the Folin phenol reagent. . J Biol Chem 193:, 265–275.[PubMed]
    [Google Scholar]
  30. Mackinney G. . ( 1941; ). Absorption of light by chlorophyll solutions. . J Biol Chem 140:, 315–322.
    [Google Scholar]
  31. Mori T. , Saveliev S. V. , Xu Y. , Stafford W. F. , Cox M. M. , Inman R. B. , Johnson C. H. . ( 2002; ). Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA. . Proc Natl Acad Sci U S A 99:, 17203–17208. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mullineaux C. W. , Stanewsky R. . ( 2009; ). The rolex and the hourglass: a simplified circadian clock in prochlorococcus?. J Bacteriol 191:, 5333–5335. [CrossRef] [PubMed]
    [Google Scholar]
  33. Murayama Y. , Mukaiyama A. , Imai K. , Onoue Y. , Tsunoda A. , Nohara A. , Ishida T. , Maéda Y. , Terauchi K. et al. ( 2011; ). Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. . EMBO J 30:, 68–78. [CrossRef] [PubMed]
    [Google Scholar]
  34. Nakajima M. , Imai K. , Ito H. , Nishiwaki T. , Murayama Y. , Iwasaki H. , Oyama T. , Kondo T. . ( 2005; ). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. . Science 308:, 414–415. [CrossRef] [PubMed]
    [Google Scholar]
  35. Nakajima M. , Ito H. , Kondo T. . ( 2010; ). In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB. . FEBS Lett 584:, 898–902. [CrossRef] [PubMed]
    [Google Scholar]
  36. Nicholas K. B. , Nicholas H. B. Jr , Deerfield D. W. I. . ( 1997; ). GeneDoc: Analysis and Visualization of Genetic Variation. . EMBNEW NEWS 4:, 14.
    [Google Scholar]
  37. Nishiwaki T. , Kondo T. . ( 2012; ). Circadian autodephosphorylation of cyanobacterial clock protein KaiC occurs via formation of ATP as intermediate. . J Biol Chem 287:, 18030–18035. [CrossRef] [PubMed]
    [Google Scholar]
  38. Nishiwaki T. , Satomi Y. , Nakajima M. , Lee C. , Kiyohara R. , Kageyama H. , Kitayama Y. , Temamoto M. , Yamaguchi A. et al. ( 2004; ). Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. . Proc Natl Acad Sci U S A 101:, 13927–13932. [CrossRef] [PubMed]
    [Google Scholar]
  39. Nishiwaki T. , Satomi Y. , Kitayama Y. , Terauchi K. , Kiyohara R. , Takao T. , Kondo T. . ( 2007; ). A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. . EMBO J 26:, 4029–4037. [CrossRef] [PubMed]
    [Google Scholar]
  40. O’Neill J. S. , Reddy A. B. . ( 2011; ). Circadian clocks in human red blood cells. . Nature 469:, 498–503. [CrossRef] [PubMed]
    [Google Scholar]
  41. O’Neill J. S. , van Ooijen G. , Dixon L. E. , Troein C. , Corellou F. , Bouget F.-Y. , Reddy A. B. , Millar A. J. . ( 2011; ). Circadian rhythms persist without transcription in a eukaryote. . Nature 469:, 554–558. [CrossRef] [PubMed]
    [Google Scholar]
  42. Pattanayek R. , Wang J. , Mori T. , Xu Y. , Johnson C. H. , Egli M. . ( 2004; ). Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. . Mol Cell 15:, 375–388. [CrossRef] [PubMed]
    [Google Scholar]
  43. Pattanayek R. , Williams D. R. , Pattanayek S. , Xu Y. , Mori T. , Johnson C. H. , Stewart P. L. , Egli M. . ( 2006; ). Analysis of KaiA–KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. . EMBO J 25:, 2017–2028. [CrossRef] [PubMed]
    [Google Scholar]
  44. Peter E. , Salinas A. , Wallner T. , Jeske D. , Dienst D. , Wilde A. , Grimm B. . ( 2009; ). Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. . Biochim Biophys Acta 1787:, 1458–1467. [CrossRef] [PubMed]
    [Google Scholar]
  45. Qin X. , Byrne M. , Mori T. , Zou P. , Williams D. R. , McHaourab H. , Johnson C. H. . ( 2010; ). Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. . Proc Natl Acad Sci U S A 107:, 14805–14810. [CrossRef] [PubMed]
    [Google Scholar]
  46. Rippka R. , Deruelles J. , Waterbury J. B. , Herdman M. , Stanier R. Y. . ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. . J Gen Microbiol 111:, 1–61.[CrossRef]
    [Google Scholar]
  47. Rust M. J. , Markson J. S. , Lane W. S. , Fisher D. S. , O’Shea E. K. . ( 2007; ). Ordered phosphorylation governs oscillation of a three-protein circadian clock. . Science 318:, 809–812. [CrossRef] [PubMed]
    [Google Scholar]
  48. Schägger H. , von Jagow G. . ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. . Anal Biochem 166:, 368–379. [CrossRef] [PubMed]
    [Google Scholar]
  49. Sievers F. , Wilm A. , Dineen D. , Gibson T. J. , Karplus K. , Li W. , Lopez R. , McWilliam H. , Remmert M. et al. ( 2011; ). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. . Mol Syst Biol 7:, 539. [CrossRef] [PubMed]
    [Google Scholar]
  50. Tartof K. D. , Hobbs C. A. . ( 1987; ). Improved media for growing plasmid and cosmid clones. . Focus 9:, 12.
    [Google Scholar]
  51. Terauchi K. , Kitayama Y. , Nishiwaki T. , Miwa K. , Murayama Y. , Oyama T. , Kondo T. . ( 2007; ). ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. . Proc Natl Acad Sci U S A 104:, 16377–16381. [CrossRef] [PubMed]
    [Google Scholar]
  52. Tomita J. , Nakajima M. , Kondo T. , Iwasaki H. . ( 2005; ). No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. . Science 307:, 251–254. [CrossRef] [PubMed]
    [Google Scholar]
  53. Uzumaki T. , Fujita M. , Nakatsu T. , Hayashi F. , Shibata H. , Itoh N. , Kato H. , Ishiura M. . ( 2004; ). Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein. . Nat Struct Mol Biol 11:, 623–631. [CrossRef] [PubMed]
    [Google Scholar]
  54. Vakonakis I. , LiWang A. C. . ( 2004; ). Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: implications for KaiC regulation. . Proc Natl Acad Sci U S A 101:, 10925–10930. [CrossRef] [PubMed]
    [Google Scholar]
  55. Vakonakis I. , Sun J. , Wu T. , Holzenburg A. , Golden S. S. , LiWang A. C. . ( 2004; ). NMR structure of the KaiC-interacting C-terminal domain of KaiA, a circadian clock protein: implications for KaiA–KaiC interaction. . Proc Natl Acad Sci U S A 101:, 1479–1484. [CrossRef] [PubMed]
    [Google Scholar]
  56. Vijayan V. , Zuzow R. , O’Shea E. K. . ( 2009; ). Oscillations in supercoiling drive circadian gene expression in cyanobacteria. . Proc Natl Acad Sci U S A 106:, 22564–22568. [CrossRef] [PubMed]
    [Google Scholar]
  57. Williams S. B. , Vakonakis I. , Golden S. S. , LiWang A. C. . ( 2002; ). Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. . Proc Natl Acad Sci U S A 99:, 15357–15362. [CrossRef] [PubMed]
    [Google Scholar]
  58. Xu Y. , Mori T. , Johnson C. H. . ( 2000; ). Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. . EMBO J 19:, 3349–3357. [CrossRef] [PubMed]
    [Google Scholar]
  59. Xu Y. , Mori T. , Johnson C. H. . ( 2003; ). Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. . EMBO J 22:, 2117–2126. [CrossRef] [PubMed]
    [Google Scholar]
  60. Xu Y. , Mori T. , Pattanayek R. , Pattanayek S. , Egli M. , Johnson C. H. . ( 2004; ). Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. . Proc Natl Acad Sci U S A 101:, 13933–13938. [CrossRef] [PubMed]
    [Google Scholar]
  61. Xu Y. , Mori T. , Qin X. , Yan H. , Egli M. , Johnson C. H. . ( 2009; ). Intramolecular regulation of phosphorylation status of the circadian clock protein KaiC. . PLoS ONE 4:, e7509. [CrossRef] [PubMed]
    [Google Scholar]
  62. Zinchenko V. V. , Piven I. V. , Melnik V. A. , Shestakov S. V. . ( 1999; ). Vectors for the complementation analysis of cyanobacterial mutants. . Russ J Genet 35:, 228–232.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065425-0
Loading
/content/journal/micro/10.1099/mic.0.065425-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error