1887

Abstract

HP1043 of is an orphan response regulator (RR) with a highly degenerate receiver sequence incapable of phosphorylation, which is essential for cell viability. In contrast, the orthologous RR protein of , an enterohepatic species mainly isolated from poultry, harbours a consensus receiver sequence and is associated with a cognate histidine kinase (HK). Here, we show that this two-component system of , denoted HPMG439/HPMG440, is involved in the control of nitrogen metabolism by regulating the expression of glutamate dehydrogenase, an AmtB ammonium transporter and a P protein. However, the role of the RR HPMG439 is not restricted to nitrogen regulation since, in contrast with the HK HPMG440, HPMG439 is essential for growth of under nutrient-rich conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066548-0
2013-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/880.html?itemId=/content/journal/micro/10.1099/mic.0.066548-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Ling L.-S. L., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C. et al. ( 1999;). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. . Nature 397:, 176–180. [CrossRef][PubMed]
    [Google Scholar]
  2. Amon J., Bräu T., Grimrath A., Hänssler E., Hasselt K., Höller M., Jessberger N., Ott L., Szököl J. et al. ( 2008;). Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-type regulator GlnR. . J Bacteriol 190:, 7108–7116. [CrossRef][PubMed]
    [Google Scholar]
  3. Amon J., Titgemeyer F., Burkovski A.. ( 2010;). Common patterns – unique features: nitrogen metabolism and regulation in Gram-positive bacteria. . FEMS Microbiol Rev 34:, 588–605.[PubMed]
    [Google Scholar]
  4. Antonopoulos D. A., Aminov R. I., Duncan P. A., White B. A., Mackie R. I.. ( 2003;). Characterization of the gene encoding glutamate dehydrogenase (gdhA) from the ruminal bacterium Ruminococcus flavefaciens FD-1. . Arch Microbiol 179:, 184–190.[PubMed]
    [Google Scholar]
  5. Atkinson M. R., Blauwkamp T. A., Bondarenko V., Studitsky V., Ninfa A. J.. ( 2002;). Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. . J Bacteriol 184:, 5358–5363. [CrossRef][PubMed]
    [Google Scholar]
  6. Beier D., Frank R.. ( 2000;). Molecular characterization of two-component systems of Helicobacter pylori. . J Bacteriol 182:, 2068–2076. [CrossRef][PubMed]
    [Google Scholar]
  7. Beier D., Spohn G., Rappuoli R., Scarlato V.. ( 1997;). Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. . J Bacteriol 179:, 4676–4683.[PubMed]
    [Google Scholar]
  8. Boutin S. R., Shen Z., Roesch P. L., Stiefel S. M., Sanderson A. E., Multari H. M., Pridhoko E. A., Smith J. C., Taylor N. S. et al. ( 2010;). Helicobacter pullorum outbreak in C57BL/6NTac and C3H/HeNTac barrier-maintained mice. . J Clin Microbiol 48:, 1908–1910. [CrossRef][PubMed]
    [Google Scholar]
  9. Burnens A. P., Stanley J., Morgenstern R., Nicolet J.. ( 1994;). Gastroenteritis associated with Helicobacter pullorum. . Lancet 344:, 1569–1570. [CrossRef][PubMed]
    [Google Scholar]
  10. Cacioppo L. D., Turk M. L., Shen Z., Ge Z., Parry N., Whary M. T., Boutin S. R., Klein H. J., Fox J. G.. ( 2012;). Natural and experimental Helicobacter pullorum infection in Brown Norway rats. . J Med Microbiol 61:, 1319–1323. [CrossRef][PubMed]
    [Google Scholar]
  11. Camarena L., Poggio S., García N., Osorio A.. ( 1998;). Transcriptional repression of gdhA in Escherichia coli is mediated by the Nac protein. . FEMS Microbiol Lett 167:, 51–56. [CrossRef][PubMed]
    [Google Scholar]
  12. Castéra L., Pedeboscq A., Rocha M., Le Bail B., Asencio C., de Lédinghen V., Bernard P. H., Laurent C., Lafon M. E. et al. ( 2006;). Relationship between the severity of hepatitis C virus-related liver disease and the presence of Helicobacter species in the liver: a prospective study. . World J Gastroenterol 12:, 7278–7284.[PubMed]
    [Google Scholar]
  13. Ceelen L. M., Decostere A., Van den Bulck K., On S. L. W., Baele M., Ducatelle R., Haesebrouck F.. ( 2006;). Helicobacter pullorum in chickens, Belgium. . Emerg Infect Dis 12:, 263–267. [CrossRef][PubMed]
    [Google Scholar]
  14. Ceelen L. M., Decostere A., Chiers K., Ducatelle R., Maes D., Haesebrouck F.. ( 2007;). Pathogenesis of Helicobacter pullorum infections in broilers. . Int J Food Microbiol 116:, 207–213. [CrossRef][PubMed]
    [Google Scholar]
  15. Chevalier C., Thiberge J. M., Ferrero R. L., Labigne A.. ( 1999;). Essential role of Helicobacter pylori γ-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. . Mol Microbiol 31:, 1359–1372. [CrossRef][PubMed]
    [Google Scholar]
  16. Delany I., Spohn G., Rappuoli R., Scarlato V.. ( 2002;). Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043 of Helicobacter pylori. . J Bacteriol 184:, 4800–4810. [CrossRef][PubMed]
    [Google Scholar]
  17. Detsch C., Stülke J.. ( 2003;). Ammonium utilization in Bacillus subtilis: transport and regulatory functions of NrgA and NrgB. . Microbiology 149:, 3289–3297. [CrossRef][PubMed]
    [Google Scholar]
  18. Drepper T., Gross S., Yakunin A. F., Hallenbeck P. C., Masepohl B., Klipp W.. ( 2003;). Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus. . Microbiology 149:, 2203–2212. [CrossRef][PubMed]
    [Google Scholar]
  19. Ferrero R. L., Cussac V., Courcoux P., Labigne A.. ( 1992;). Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. . J Bacteriol 174:, 4212–4217.[PubMed]
    [Google Scholar]
  20. Forchhammer K.. ( 2008;). PII signal transducers: novel functional and structural insights. . Trends Microbiol 16:, 65–72. [CrossRef][PubMed]
    [Google Scholar]
  21. Forchhammer K., Tandeau de Marsac N.. ( 1995;). Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity. . J Bacteriol 177:, 5812–5817.[PubMed]
    [Google Scholar]
  22. Fox J. G., Dewhirst F. E., Shen Z., Feng Y., Taylor N. S., Paster B. J., Ericson R. L., Lau C. N., Correa P. et al. ( 1998;). Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. . Gastroenterology 114:, 755–763. [CrossRef][PubMed]
    [Google Scholar]
  23. Garénaux A., Guillou S., Ermel G., Wren B., Federighi M., Ritz M.. ( 2008;). Role of the Cj1371 periplasmic protein and the Cj0355c two-component regulator in the Campylobacter jejuni NCTC 11168 response to oxidative stress caused by paraquat. . Res Microbiol 159:, 718–726. [CrossRef][PubMed]
    [Google Scholar]
  24. Garner R. M., Fulkerson J. Jr, Mobley H. L.. ( 1998;). Helicobacter pylori glutamine synthetase lacks features associated with transcriptional and posttranslational regulation. . Infect Immun 66:, 1839–1847.[PubMed]
    [Google Scholar]
  25. Guccione E., Leon-Kempis M. R., Pearson B. M., Hitchin E., Mulholland F., van Diemen P. M., Stevens M. P., Kelly D. J.. ( 2008;). Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. . Mol Microbiol 69:, 77–93. [CrossRef][PubMed]
    [Google Scholar]
  26. Hansen R., Thomson J. M., Fox J. G., El-Omar E. M., Hold G. L.. ( 2011;). Could Helicobacter organisms cause inflammatory bowel disease?. FEMS Immunol Med Microbiol 61:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  27. Hänßler E., Müller T., Palumbo K., Patek M., Brocker M., Krämer R., Burkovski A.. ( 2009;). A game with many players: control of gdh transcription in Corynebacterium glutamicum. . J Biotechnol 142:, 114–122. [CrossRef][PubMed]
    [Google Scholar]
  28. Harper C. J., Hayward D., Kidd M., Wiid I., van Helden P.. ( 2010;). Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis. . BMC Microbiol 10:, 138. [CrossRef][PubMed]
    [Google Scholar]
  29. Heinrich A., Woyda K., Brauburger K., Meiss G., Detsch C., Stülke J., Forchhammer K.. ( 2006;). Interaction of the membrane-bound GlnK–AmtB complex with the master regulator of nitrogen metabolism TnrA in Bacillus subtilis. . J Biol Chem 281:, 34909–34917. [CrossRef][PubMed]
    [Google Scholar]
  30. Hervás A. B., Canosa I., Little R., Dixon R., Santero E.. ( 2009;). NtrC-dependent regulatory network for nitrogen assimilation in Pseudomonas putida. . J Bacteriol 191:, 6123–6135. [CrossRef][PubMed]
    [Google Scholar]
  31. Hervás A. B., Canosa I., Santero E.. ( 2010;). Regulation of glutamate dehydrogenase expression in Pseudomonas putida results from its direct repression by NtrC under nitrogen-limiting conditions. . Mol Microbiol 78:, 305–319. [CrossRef][PubMed]
    [Google Scholar]
  32. Hong E., Jung J. W., Shin J., Kim J. H., Jeon Y. H., Yamazaki T., Lee W.. ( 2004;). Letter to the Editor: Backbone 1H, 13C and 15N resonance assignments of the response regulator HP1043 from Helicobacter pylori. . J Biomol NMR 28:, 85–86. [CrossRef][PubMed]
    [Google Scholar]
  33. Hong E., Lee H. M., Ko H., Kim D.-U., Jeon B.-Y., Jung J., Shin J., Lee S.-A., Kim Y. et al. ( 2007;). Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. . J Biol Chem 282:, 20667–20675. [CrossRef][PubMed]
    [Google Scholar]
  34. Huergo L. F., Chandra G., Merrick M.. ( 2013;). PII signal transduction proteins: nitrogen regulation and beyond. . FEMS Microbiol Rev 37:, 251–283. [CrossRef][PubMed]
    [Google Scholar]
  35. Hwang S., Kim M., Ryu S., Jeon B.. ( 2011;). Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. . PLoS ONE 6:, e22300. [CrossRef][PubMed]
    [Google Scholar]
  36. Jack R., De Zamaroczy M., Merrick M.. ( 1999;). The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. . J Bacteriol 181:, 1156–1162.[PubMed]
    [Google Scholar]
  37. Jervis A. J., Langdon R., Hitchen P., Lawson A. J., Wood A., Fothergill J. L., Morris H. R., Dell A., Wren B., Linton D.. ( 2010;). Characterization of N-linked protein glycosylation in Helicobacter pullorum. . J Bacteriol 192:, 5228–5236. [CrossRef][PubMed]
    [Google Scholar]
  38. Kavermann H., Burns B. P., Angermuller K., Odenbreit S., Fischer W., Melchers K., Haas R.. ( 2003;). Identification and characterization of Helicobacter pylori genes essential for gastric colonization. . J Exp Med 197:, 813–822. [CrossRef][PubMed]
    [Google Scholar]
  39. Kloosterman T. G., Hendriksen W. T., Bijlsma J. J. E., Bootsma H. J., van Hijum S. A. F. T., Kok J., Hermans P. W. M., Kuipers O. P.. ( 2006;). Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae. . J Biol Chem 281:, 25097–25109. [CrossRef][PubMed]
    [Google Scholar]
  40. Labigne-Roussel A., Courcoux P., Tompkins L.. ( 1988;). Gene disruption and replacement as a feasible approach for mutagenesis of Campylobacter jejuni. . J Bacteriol 170:, 1704–1708.[PubMed]
    [Google Scholar]
  41. Leduc D., Gallaud J., Stingl K., de Reuse H.. ( 2010;). Coupled amino acid deamidase-transport systems essential for Helicobacter pylori colonization. . Infect Immun 78:, 2782–2792. [CrossRef][PubMed]
    [Google Scholar]
  42. Lee H. M., Hong E., Jeon B. Y., Kim D. U., Byun J. S., Lee W., Cho H. S.. ( 2006;). Crystallization and preliminary X-ray crystallographic study of HP1043, a Helicobacter pylori orphan response regulator. . Biochim Biophys Acta 1764:, 989–991. [CrossRef][PubMed]
    [Google Scholar]
  43. Leigh J. A., Dodsworth J. A.. ( 2007;). Nitrogen regulation in bacteria and archaea. . Annu Rev Microbiol 61:, 349–377. [CrossRef][PubMed]
    [Google Scholar]
  44. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. . Methods 25:, 402–408. [CrossRef][PubMed]
    [Google Scholar]
  45. McDaniel T. K., Dewalt K. C., Salama N. R., Falkow S.. ( 2001;). New approaches for validation of lethal phenotypes and genetic reversion in Helicobacter pylori. . Helicobacter 6:, 15–23. [CrossRef][PubMed]
    [Google Scholar]
  46. McGovern K. J., Blanchard T. G., Gutierrez J. A., Czinn S. J., Krakowka S., Youngman P.. ( 2001;). γ-Glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization. . Infect Immun 69:, 4168–4173. [CrossRef][PubMed]
    [Google Scholar]
  47. Mendz G. L., Hazell S. L.. ( 1995;). Aminoacid utilization by Helicobacter pylori. . Int J Biochem Cell Biol 27:, 1085–1093. [CrossRef][PubMed]
    [Google Scholar]
  48. Merrell D. S., Goodrich M. L., Otto G., Tompkins L. S., Falkow S.. ( 2003;). pH-regulated gene expression of the gastric pathogen Helicobacter pylori. . Infect Immun 71:, 3529–3539. [CrossRef][PubMed]
    [Google Scholar]
  49. Müller S., Pflock M., Schär J., Kennard S., Beier D.. ( 2007;). Regulation of expression of atypical orphan response regulators of Helicobacter pylori. . Microbiol Res 162:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  50. Nebbia P., Tramuta C., Ortoffi M., Bert E., Cerruti Sola S., Robino P.. ( 2007;). Identification of enteric Helicobacter in avian species. . Schweiz Arch Tierheilkd 149:, 403–407. [CrossRef][PubMed]
    [Google Scholar]
  51. Ninfa A. J., Atkinson M. R.. ( 2000;). PII signal transduction proteins. . Trends Microbiol 8:, 172–179. [CrossRef][PubMed]
    [Google Scholar]
  52. Nolden L., Ngouoto-Nkili C. E., Bendt A. K., Krämer R., Burkovski A.. ( 2001;). Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. . Mol Microbiol 42:, 1281–1295. [CrossRef][PubMed]
    [Google Scholar]
  53. Nolden L., Beckers G., Burkovski A.. ( 2002;). Nitrogen assimilation in Corynebacterium diphtheriae: pathways and regulatory cascades. . FEMS Microbiol Lett 208:, 287–293. [CrossRef][PubMed]
    [Google Scholar]
  54. Panthel K., Dietz P., Haas R., Beier D.. ( 2003;). Two-component systems of Helicobacter pylori contribute to virulence in a mouse infection model. . Infect Immun 71:, 5381–5385. [CrossRef][PubMed]
    [Google Scholar]
  55. Pflock M., Kennard S., Delany I., Scarlato V., Beier D.. ( 2005;). Acid-induced activation of the urease promoters is mediated directly by the ArsRS two-component system of Helicobacter pylori. . Infect Immun 73:, 6437–6445. [CrossRef][PubMed]
    [Google Scholar]
  56. Pflock M., Finsterer N., Joseph B., Mollenkopf H., Meyer T. F., Beier D.. ( 2006;). Characterization of the ArsRS regulon of Helicobacter pylori, involved in acid adaptation. . J Bacteriol 188:, 3449–3462. [CrossRef][PubMed]
    [Google Scholar]
  57. Raphael B. H., Pereira S., Flom G. A., Zhang Q., Ketley J. M., Konkel M. E.. ( 2005;). The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. . J Bacteriol 187:, 3662–3670. [CrossRef][PubMed]
    [Google Scholar]
  58. Schär J., Sickmann A., Beier D.. ( 2005;). Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori. . J Bacteriol 187:, 3100–3109. [CrossRef][PubMed]
    [Google Scholar]
  59. Schwacha A., Bender R. A.. ( 1993;). The product of the Klebsiella aerogenes nac (nitrogen assimilation control) gene is sufficient for activation of the hut operons and repression of the gdh operon. . J Bacteriol 175:, 2116–2124.[PubMed]
    [Google Scholar]
  60. Schwarze-Zander C., Becker S., Wenzel J., Rockstroh J. K., Spengler U., Yassin A. F.. ( 2010;). Bacteremia caused by a novel helicobacter species in a 28-year-old man with X-linked agammaglobulinemia. . J Clin Microbiol 48:, 4672–4676. [CrossRef][PubMed]
    [Google Scholar]
  61. Sharma C. M., Hoffmann S., Darfeuille F., Reignier J., Findeiß S., Sittka A., Chabas S., Reiche K., Hackermüller J. et al. ( 2010;). The primary transcriptome of the major human pathogen Helicobacter pylori. . Nature 464:, 250–255. [CrossRef][PubMed]
    [Google Scholar]
  62. Spohn G., Scarlato V.. ( 1999;). Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. . J Bacteriol 181:, 593–599.[PubMed]
    [Google Scholar]
  63. Stanley J., Linton D., Burnens A. P., Dewhirst F. E., On S. L., Porter A., Owen R. J., Costas M.. ( 1994;). Helicobacter pullorum sp. nov. – genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis. . Microbiology 140:, 3441–3449. [CrossRef][PubMed]
    [Google Scholar]
  64. Stark R. M., Suleiman M.-S., Hassan I. J., Greenman J., Millar M. R.. ( 1997;). Amino acid utilisation and deamination of glutamine and asparagine by Helicobacter pylori. . J Med Microbiol 46:, 793–800. [CrossRef][PubMed]
    [Google Scholar]
  65. Steinbrueckner B., Haerter G., Pelz K., Weiner S., Rump J. A., Deissler W., Bereswill S., Kist M.. ( 1997;). Isolation of Helicobacter pullorum from patients with enteritis. . Scand J Infect Dis 29:, 315–318. [CrossRef][PubMed]
    [Google Scholar]
  66. Tee W., Montgomery J., Dyall-Smith M.. ( 2001;). Bacteremia caused by a Helicobacter pullorum-like organism. . Clin Infect Dis 33:, 1789–1791. [CrossRef][PubMed]
    [Google Scholar]
  67. Tiffert Y., Supra P., Wurm R., Wohlleben W., Wagner R., Reuther J.. ( 2008;). The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. . Mol Microbiol 67:, 861–880. [CrossRef][PubMed]
    [Google Scholar]
  68. Tomb J.-F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H.-P., Gill S. et al. ( 1997;). The complete genome sequence of the gastric pathogen Helicobacter pylori. . Nature 388:, 539–547. [CrossRef][PubMed]
    [Google Scholar]
  69. Turk M. L., Cacioppo L. D., Ge Z., Shen Z., Whary M. T., Parry N., Boutin S. R., Klein H. J., Fox J. G.. ( 2012;). Persistent Helicobacter pullorum colonization in C57BL/6NTac mice: a new mouse model for an emerging zoonosis. . J Med Microbiol 61:, 720–728. [CrossRef][PubMed]
    [Google Scholar]
  70. Ueki T., Lovley D. R.. ( 2010;). Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens. . Nucleic Acids Res 38:, 7485–7499. [CrossRef][PubMed]
    [Google Scholar]
  71. Veijola L., Nilsson I., Halme L., Al-Soud W. A., Mäkinen J., Ljungh A., Rautelin H.. ( 2007;). Detection of Helicobacter species in chronic liver disease and chronic inflammatory bowel disease. . Ann Med 39:, 554–560. [CrossRef][PubMed]
    [Google Scholar]
  72. Waidner B., Melchers K., Stähler F. N., Kist M., Bereswill S.. ( 2005;). The Helicobacter pylori CrdRS two-component regulation system (HP1364/HP1365) is required for copper-mediated induction of the copper resistance determinant CrdA. . J Bacteriol 187:, 4683–4688. [CrossRef][PubMed]
    [Google Scholar]
  73. Wang Y., Taylor D. E.. ( 1990;). Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. . Gene 94:, 23–28. [CrossRef][PubMed]
    [Google Scholar]
  74. Winkler C., Denker K., Wortelkamp S., Sickmann A.. ( 2007;). Silver- and Coomassie-staining protocols: detection limits and compatibility with ESI MS. . Electrophoresis 28:, 2095–2099. [CrossRef][PubMed]
    [Google Scholar]
  75. Xiang Z., Censini S., Bayeli P. F., Telford J. L., Figura N., Rappuoli R., Covacci A.. ( 1995;). Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. . Infect Immun 63:, 94–98.[PubMed]
    [Google Scholar]
  76. Zanoni R. G., Rossi M., Giacomucci D., Sanguinetti V., Manfreda G.. ( 2007;). Occurrence and antibiotic susceptibility of Helicobacter pullorum from broiler chickens and commercial laying hens in Italy. . Int J Food Microbiol 116:, 168–173. [CrossRef][PubMed]
    [Google Scholar]
  77. Zanoni R. G., Piva S., Rossi M., Pasquali F., Lucchi A., De Cesare A., Manfreda G.. ( 2011;). Occurrence of Helicobacter pullorum in turkeys. . Vet Microbiol 149:, 492–496. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066548-0
Loading
/content/journal/micro/10.1099/mic.0.066548-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error