1887

Abstract

Here, we sought to investigate the vacuole-targeting fungicidal activity of amphotericin B (AmB) in the parent strain and AmB-resistant mutant of and elucidate the mechanisms involved in this process. Our data demonstrated that the vacuole-targeting fungicidal activity of AmB was markedly enhanced by -methyl--dodecylguanidine (MC12), a synthetic analogue of the alkyl side chain in niphimycin, as represented by the synergy in their antifungal activities against parent cells of Indifference was observed only with Δ cells, indicating that the replacement of ergosterol with episterol facilitated their resistance to the combined lethal actions of AmB and MC12. Dansyl-labelled amphotericin B (AmB-Ds) was concentrated into normal rounded vacuoles when parent cells were treated with AmB-Ds alone, even at a non-lethal concentration. The additional supplementation of MC12 resulted in a marked loss of cell viability and vacuole disruption, as judged by the fluorescence from AmB-Ds scattered throughout the cytoplasm. In Δ cells, AmB-Ds was scarcely detected in the cytoplasm, even with the addition of MC12, reflecting its failure to normally incorporate across the plasma membrane into the vacuole. Thus, this study supported the hypothesis that ergosterol is involved in the mobilization of AmB into the vacuolar membrane so that AmB-dependent vacuole disruption can be fully enhanced by cotreatment with MC12.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065714-0
2013-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/939.html?itemId=/content/journal/micro/10.1099/mic.0.065714-0&mimeType=html&fmt=ahah

References

  1. Alonso M. A. , Vázquez D. , Carrasco L. . ( 1979; ). Compounds affecting membranes that inhibit protein synthesis in yeast. . Antimicrob Agents Chemother 16:, 750–756. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baginski M. , Sternal K. , Czub J. , Borowski E. . ( 2005; ). Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic. . Acta Biochim Pol 52:, 655–658.[PubMed]
    [Google Scholar]
  3. Borjihan H. , Ogita A. , Fujita K. , Hirasawa E. , Tanaka T. . ( 2009; ). The vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans and its enhancement by allicin. . J Antibiot (Tokyo) 62:, 691–697. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bourot S. , Karst F. . ( 1995; ). Isolation and characterization of the Saccharomyces cerevisiae SUT1 gene involved in sterol uptake. . Gene 165:, 97–102. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carrillo-Muñoz A. J. , Giusiano G. , Ezkurra P. A. , Quindós G. . ( 2006; ). Antifungal agents: mode of action in yeast cells. . Rev Esp Quimioter 19:, 130–139.[PubMed]
    [Google Scholar]
  6. Davis L. E. , Shen J. , Royer R. E. . ( 1994; ). In vitro synergism of concentrated Allium sativum extract and amphotericin B against Cryptococcus neoformans . . Planta Med 60:, 546–549. [CrossRef] [PubMed]
    [Google Scholar]
  7. Eliopoulos G. M. , Moellering R. C. . ( 1991; ). Antimicrobial combinations. . In Antibiotics in Laboratory Medicine, , 3rd edn., pp. 432–492. Edited by Lorian V. . . Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  8. Kato M. , Wickner W. . ( 2001; ). Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. . EMBO J 20:, 4035–4040. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kim J. H. , Faria N. C. , Martins M. L. , Chan K. L. , Campbell B. C. . ( 2012; ). Enhancement of antimycotic activity of amphotericin B by targeting the oxidative stress response of Candida and Cryptococcus with natural dihydroxybenzaldehydes. . Front Microbiol 3:, 261. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kurono M. , Isobe M. . ( 2004; ). Synthesis and physical nature of fluorescent photoaffinity probe for the bioorganic studies on tautomycin, a protein phosphatase type 1 selective inhibitor. . Chem Lett 33:, 452–453. [CrossRef]
    [Google Scholar]
  11. Martel C. M. , Parker J. E. , Bader O. , Weig M. , Gross U. , Warrilow A. G. , Kelly D. E. , Kelly S. L. . ( 2010; ). A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14α-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. . Antimicrob Agents Chemother 54:, 3578–3583. [CrossRef] [PubMed]
    [Google Scholar]
  12. Nakayama K. , Yamaguchi T. , Doi T. , Usuki Y. , Taniguchi M. , Tanaka T. . ( 2002; ). Synergistic combination of direct plasma membrane damage and oxidative stress as a cause of antifungal activity of polyol macrolide antibiotic niphimycin. . J Biosci Bioeng 94:, 207–211.[PubMed] [CrossRef]
    [Google Scholar]
  13. Ogita A. , Hirooka K. , Yamamoto Y. , Tsutsui N. , Fujita K. , Taniguchi M. , Tanaka T. . ( 2005; ). Synergistic fungicidal activity of Cu2+ and allicin, an allyl sulfur compound from garlic, and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in Saccharomyces cerevisiae . . Toxicology 215:, 205–213. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ogita A. , Fujita K. , Taniguchi M. , Tanaka T. . ( 2006; ). Enhancement of the fungicidal activity of amphotericin B by allicin, an allyl-sulfur compound from garlic, against the yeast Saccharomyces cerevisiae as a model system. . Planta Med 72:, 1247–1250. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ogita A. , Matsumoto K. , Fujita K. , Usuki Y. , Hatanaka Y. , Tanaka T. . ( 2007; ). Synergistic fungicidal activities of amphotericin B and N-methyl-N″-dodecylguanidine: a constituent of polyol macrolide antibiotic niphimycin. . J Antibiot (Tokyo) 60:, 27–35. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ogita A. , Fujita K. , Tanaka T. . ( 2009; ). Enhancement of the fungicidal activity of amphotericin B by allicin: effects on intracellular ergosterol trafficking. . Planta Med 75:, 222–226. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ogita A. , Fujita K. , Usuki Y. , Tanaka T. . ( 2010a; ). Targeted yeast vacuole disruption by polyene antibiotics with a macrocyclic lactone ring. . Int J Antimicrob Agents 35:, 89–92. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ogita A. , Yutani M. , Fujita K. , Tanaka T. . ( 2010b; ). Dependence of vacuole disruption and independence of potassium ion efflux in fungicidal activity induced by combination of amphotericin B and allicin against Saccharomyces cerevisiae . . J Antibiot (Tokyo) 63:, 689–692. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ogita A. , Fujita K. , Tanaka T. . ( 2012; ). Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. . Front Microbiol 3:, 100. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ramotowski S. , Szcześniak M. . ( 1967; ). [Determination of potassium salt content in pharmaceutical preparations by means of sodium tetraphenylborate]. . Acta Pol Pharm 24:, 605–613 (in Polish).[PubMed]
    [Google Scholar]
  21. Sanglard D. , Ischer F. , Parkinson T. , Falconer D. , Bille J. . ( 2003; ). Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. . Antimicrob Agents Chemother 47:, 2404–2412. [CrossRef] [PubMed]
    [Google Scholar]
  22. Tanaka T. , Nakayama K. , Machida K. , Taniguchi M. . ( 2000; ). Long-chain alkyl ester of AMP acts as an antagonist of glucose-induced signal transduction that mediates activation of plasma membrane protein pump in Saccharomyces cerevisiae . . Microbiology 146:, 377–384.[PubMed]
    [Google Scholar]
  23. Usuki Y. , Matsumoto K. , Inoue T. , Yoshioka K. , Iio H. , Tanaka T. . ( 2006; ). Structure-activity relationship studies on niphimycin, a guanidylpolyol macrolide antibiotic. Part 1: the role of the N-methyl-N″-alkylguanidium moiety. . Bioorg Med Chem Lett 16:, 1553–1556. [CrossRef] [PubMed]
    [Google Scholar]
  24. Vida T. A. , Emr S. D. . ( 1995; ). A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. . J Cell Biol 128:, 779–792. [CrossRef] [PubMed]
    [Google Scholar]
  25. Yamaji N. , Matsumori N. , Matsuoka S. , Oishi T. , Murata M. . ( 2002; ). Amphotericin B dimers with bisamide linkage bearing powerful membrane-permeabilizing activity. . Org Lett 4:, 2087–2089. [CrossRef] [PubMed]
    [Google Scholar]
  26. Young L. Y. , Hull C. M. , Heitman J. . ( 2003; ). Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae . . Antimicrob Agents Chemother 47:, 2717–2724. [CrossRef] [PubMed]
    [Google Scholar]
  27. Yutani M. , Ogita A. , Usuki Y. , Fujita K. , Tanaka T. . ( 2011; ). Enhancement effect of N-methyl-N″-dodecylguanidine on the vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans . . J Antibiot (Tokyo) 64:, 469–474. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065714-0
Loading
/content/journal/micro/10.1099/mic.0.065714-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error