1887

Abstract

Components of the cAMP (cyclic AMP) signalling cascades are conserved from fungi to humans, and are particularly important for fungal dimorphism and pathogenicity. Previous work has described two phosphodiesterases, UmPde1 and UmPde2, in which show strong phosphodiesterase activity. We further characterized the biological function(s) of these phosphodiesterases in . Specifically, we examined their possible role(s) in regulation of the cAMP-dependent protein kinase A (PKA) pathway and their roles in filamentous growth and pathogenicity. We found that UmPde1, which shares 35 % similarity with Pde1, also displays functional homology with this enzyme. UmPde1 complements the capsule-formation defect of strains deleted for Pde1. In , the cell morphology of the deletion mutant resembled the multiple budding phenotypes seen with the mutant, which lacks the regulatory subunit of PKA. Interestingly, on low-ammonium medium, deletion strains showed a reduction in filamentation that was comparable to that of deletion strains; however, deletion strains showed normal filamentation on low-ammonium medium. Furthermore, both the deletion strain in which the PKA pathway was constitutively active and the deletion strains were significantly reduced in pathogenicity, while the deletion strains showed a trend for reduced pathogenicity compared with wild-type strains. These data support a role for the phosphodiesterases UmPde1 and UmPde2 in regulating the cAMP-dependent PKA pathway through modulation of cAMP levels, thus affecting dimorphic growth and pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061234-0
2013-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/857.html?itemId=/content/journal/micro/10.1099/mic.0.061234-0&mimeType=html&fmt=ahah

References

  1. Agarwal C., Schultz D. J., Perlin M. H. ( 2010). Two phosphodiesterases from Ustilago maydis share structural and biochemical properties with non-fungal phosphodiesterases. Front Microbiol 1:127 [View Article][PubMed]
    [Google Scholar]
  2. Alonso G. D., Schoijet A. C., Torres H. N., Flawiá M. M. ( 2006). TcPDE4, a novel membrane-associated cAMP-specific phosphodiesterase from Trypanosoma cruzi. . Mol Biochem Parasitol 145:40–49 [View Article][PubMed]
    [Google Scholar]
  3. Bahn Y. S., Staab J., Sundstrom P. ( 2003). Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and promotes virulence of Candida albicans. . Mol Microbiol 50:391–409 [View Article][PubMed]
    [Google Scholar]
  4. Brachmann A., König J., Julius C., Feldbrügge M. ( 2004). A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. . Mol Genet Genomics 272:216–226 [View Article][PubMed]
    [Google Scholar]
  5. Conti M., Beavo J. ( 2007). Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511 [View Article][PubMed]
    [Google Scholar]
  6. D’Souza C. A., Heitman J. ( 2001). Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364 [View Article][PubMed]
    [Google Scholar]
  7. García-Pedrajas M. D., Nadal M., Bölker M., Gold S. E., Perlin M. H. ( 2008a). Sending mixed signals: redundancy vs. uniqueness of signaling components in the plant pathogen, Ustilago maydis. . Fungal Genet Biol 45:Suppl 1S22–S30 [View Article][PubMed]
    [Google Scholar]
  8. García-Pedrajas M. D., Nadal M., Kapa L. B., Perlin M. H., Andrews D. L., Gold S. E. ( 2008b). DelsGate, a robust and rapid gene deletion construction method. Fungal Genet Biol 45:379–388 [View Article][PubMed]
    [Google Scholar]
  9. Gietz R. D., Schiestl R. H. ( 1991). Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263 [View Article][PubMed]
    [Google Scholar]
  10. Gold S., Duncan G., Barrett K., Kronstad J. ( 1994). cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. . Genes Dev 8:2805–2816 [View Article][PubMed]
    [Google Scholar]
  11. Gold S. E., Brogdon S. M., Mayorga M. E., Kronstad J. W. ( 1997). The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell 9:1585–1594[PubMed] [CrossRef]
    [Google Scholar]
  12. Granger D. L., Perfect J. R., Durack D. T. ( 1985). Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest 76:508–516 [View Article][PubMed]
    [Google Scholar]
  13. Halpin D. M. G. ( 2008). ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Int J Chron Obstruct Pulmon Dis 3:543–561[PubMed]
    [Google Scholar]
  14. Hicks J. K., Yu J. H., Keller N. P., Adams T. H. ( 1997). Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J 16:4916–4923 [View Article][PubMed]
    [Google Scholar]
  15. Hicks J. K., D’Souza C. A., Cox G. M., Heitman J. ( 2004). Cyclic AMP-dependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans. . Eukaryot Cell 3:14–26 [View Article][PubMed]
    [Google Scholar]
  16. Hicks J. K., Bahn Y. S., Heitman J. ( 2005). Pde1 phosphodiesterase modulates cyclic AMP levels through a protein kinase A-mediated negative feedback loop in Cryptococcus neoformans. . Eukaryot Cell 4:1971–1981 [View Article][PubMed]
    [Google Scholar]
  17. Higuchi T., Watanabe Y., Yamamoto M. ( 2002). Protein kinase A regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol Cell Biol 22:1–11 [View Article][PubMed]
    [Google Scholar]
  18. Hu Y., Liu E., Bai X., Zhang A. ( 2010). The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae. . FEMS Yeast Res 10:177–187 [View Article][PubMed]
    [Google Scholar]
  19. Hunter S., Apweiler R., Attwood T. K., Bairoch A., Bateman A., Binns D., Bork P., Das U., Daugherty L. et al. ( 2009). InterPro: the integrative protein signature database. Nucleic Acids Res 37:Database issueD211–D215 [View Article][PubMed]
    [Google Scholar]
  20. Jauert P. A., Jensen L. E., Kirkpatrick D. T. ( 2005). A novel yeast genomic DNA library on a geneticin-resistance vector. Yeast 22:653–657 [View Article][PubMed]
    [Google Scholar]
  21. Jung W. H., Warn P., Ragni E., Popolo L., Nunn C. D., Turner M. P., Stateva L. ( 2005). Deletion of PDE2, the gene encoding the high-affinity cAMP phosphodiesterase, results in changes of the cell wall and membrane in Candida albicans. . Yeast 22:285–294 [View Article][PubMed]
    [Google Scholar]
  22. Klosterman S. J., Perlin M. H., Garcia-Pedrajas M., Covert S. F., Gold S. E. ( 2007). Genetics of morphogenesis and pathogenic development of Ustilago maydis. . Adv Genet 57:1–47 [View Article][PubMed]
    [Google Scholar]
  23. Lemaire K., Van de Velde S., Van Dijck P., Thevelein J. M. ( 2004). Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. . Mol Cell 16:293–299 [View Article][PubMed]
    [Google Scholar]
  24. Lengeler K. B., Davidson R. C., D’souza C., Harashima T., Shen W. C., Wang P., Pan X., Waugh M., Heitman J. ( 2000). Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785 [View Article][PubMed]
    [Google Scholar]
  25. Ma P., Wera S., Van Dijck P., Thevelein J. M. ( 1999). The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 10:91–104[PubMed] [CrossRef]
    [Google Scholar]
  26. Nikawa J., Sass P., Wigler M. ( 1987). Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. . Mol Cell Biol 7:3629–3636[PubMed]
    [Google Scholar]
  27. Pan X., Heitman J. ( 1999). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. . Mol Cell Biol 19:4874–4887[PubMed]
    [Google Scholar]
  28. Park J. I., Grant C. M., Dawes I. W. ( 2005). The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses. Biochem Biophys Res Commun 327:311–319 [View Article][PubMed]
    [Google Scholar]
  29. Pham C. D., Yu Z., Ben Lovely C., Agarwal C., Myers D. A., Paul J. A., Cooper M., Barati M., Perlin M. H. ( 2012). Haplo-insufficiency for different genes differentially reduces pathogenicity and virulence in a fungal phytopathogen. Fungal Genet Biol 49:21–29 [View Article][PubMed]
    [Google Scholar]
  30. Ramanujam R., Naqvi N. I. ( 2010). PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. . PLoS Pathog 6:e1000897 [View Article][PubMed]
    [Google Scholar]
  31. Rozen S., Skaletsky H. ( 2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386[PubMed]
    [Google Scholar]
  32. Sass P., Field J., Nikawa J., Toda T., Wigler M. ( 1986). Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. . Proc Natl Acad Sci U S A 83:9303–9307 [View Article][PubMed]
    [Google Scholar]
  33. Smith F. D., Scott J. D. ( 2006). Anchored cAMP signaling: onward and upward – a short history of compartmentalized cAMP signal transduction. Eur J Cell Biol 85:585–592 [View Article][PubMed]
    [Google Scholar]
  34. Smith D. G., Garcia-Pedrajas M. D., Gold S. E., Perlin M. H. ( 2003). Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Mol Microbiol 50:259–275 [View Article][PubMed]
    [Google Scholar]
  35. Toffaletti D. L., Rude T. H., Johnston S. A., Durack D. T., Perfect J. R. ( 1993). Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175:1405–1411[PubMed]
    [Google Scholar]
  36. Wahl R., Zahiri A., Kämper J. ( 2010). The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta. Mol Microbiol 75:208–220 [View Article][PubMed]
    [Google Scholar]
  37. Wera S., Ma P., Thevelein J. M. ( 1997). Glucose exerts opposite effects on mRNA versus protein and activity levels of Pde1, the low-affinity cAMP phosphodiesterase from budding yeast, Saccharomyces cerevisiae. . FEBS Lett 420:147–150 [View Article][PubMed]
    [Google Scholar]
  38. Zaragoza O., Gancedo J. M. ( 2000). Pseudohyphal growth is induced in Saccharomyces cerevisiae by a combination of stress and cAMP signalling. Antonie van Leeuwenhoek 78:187–194 [View Article][PubMed]
    [Google Scholar]
  39. Zhang H., Liu K., Zhang X., Tang W., Wang J., Guo M., Zhao Q., Zheng X., Wang P., Zhang Z. ( 2011). Two phosphodiesterase genes, PDEL and PDEH, regulate development and pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae. . PLoS ONE 6:e17241 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061234-0
Loading
/content/journal/micro/10.1099/mic.0.061234-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error