1887

Abstract

The yeast vacuole is functionally analogous to the mammalian lysosome. Both play important roles in fundamental cellular processes such as protein degradation, detoxification, osmoregulation, autophagy and apoptosis which, when deregulated in humans, can lead to several diseases. Some of these vacuolar roles are difficult to study in a cellular context, and therefore the use of a cell-free system is an important approach to gain further insight into the different molecular mechanisms required for vacuolar function. In the present study, the potentialities of flow cytometry for the structural and functional characterization of isolated yeast vacuoles were explored. The isolation protocol resulted in a yeast vacuolar fraction with a degree of purity suitable for cytometric analysis. Moreover, isolated vacuoles were structurally and functionally intact and able to generate and maintain electrochemical gradients of ions across the vacuolar membrane, as assessed by flow cytometry. Proton and calcium gradients were dissipated by NHCl and calcimycin, respectively. These results established flow cytometry as a powerful technique for the characterization of isolated vacuoles. The protocols developed in this study can also be used to enhance our understanding of several molecular mechanisms underlying the development of lysosome-related diseases, as well as provide tools to screen for new drugs that can modulate these processes, which have promising clinical relevance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062570-0
2013-05-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/848.html?itemId=/content/journal/micro/10.1099/mic.0.062570-0&mimeType=html&fmt=ahah

References

  1. Arata Y., Nishi T., Kawasaki-Nishi S., Shao E., Wilkens S., Forgac M.. ( 2002;). Structure, subunit function and regulation of the coated vesicle and yeast vacuolar (H+)-ATPases. Biochim Biophys Acta1555:71–74 [CrossRef][PubMed]
    [Google Scholar]
  2. Brett C. L., Tukaye D. N., Mukherjee S., Rao R.. ( 2005;). The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell16:1396–1405 [CrossRef][PubMed]
    [Google Scholar]
  3. Brett C. L., Kallay L., Hua Z., Green R., Chyou A., Zhang Y., Graham T. R., Donowitz M., Rao R.. ( 2011;). Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae . PLoS ONE6:e17619 [CrossRef][PubMed]
    [Google Scholar]
  4. Cochilla A. J., Angleson J. K., Betz W. J.. ( 1999;). Monitoring secretory membrane with FM1-43 fluorescence. Annu Rev Neurosci22:1–10 [CrossRef][PubMed]
    [Google Scholar]
  5. Cohen A., Perzov N., Nelson H., Nelson N.. ( 1999;). A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins. J Biol Chem274:26885–26893 [CrossRef][PubMed]
    [Google Scholar]
  6. Cools A. A., Janssen L. H.. ( 1986;). Fluorescence response of acridine orange to changes in pH gradients across liposome membranes. Experientia42:954–956 [CrossRef][PubMed]
    [Google Scholar]
  7. Cunningham K. W., Fink G. R.. ( 1996;). Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae . Mol Cell Biol16:2226–2237[PubMed]
    [Google Scholar]
  8. Eitzen G., Wang L., Thorngren N., Wickner W.. ( 2002;). Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol158:669–679 [CrossRef][PubMed]
    [Google Scholar]
  9. Forster C., Kane P. M.. ( 2000;). Cytosolic Ca2+ homeostasis is a constitutive function of the V-ATPase in Saccharomyces cerevisiae . J Biol Chem275:38245–38253 [CrossRef][PubMed]
    [Google Scholar]
  10. Gietz R. D., Woods R. A.. ( 2006;). Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol313:107–120[PubMed]
    [Google Scholar]
  11. Graham L. A., Flannery A. R., Stevens T. H.. ( 2003;). Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr35:301–312 [CrossRef][PubMed]
    [Google Scholar]
  12. Guicciardi M. E., Leist M., Gores G. J.. ( 2004;). Lysosomes in cell death. Oncogene23:2881–2890 [CrossRef][PubMed]
    [Google Scholar]
  13. Kane P. M.. ( 2006;). The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev70:177–191 [CrossRef][PubMed]
    [Google Scholar]
  14. Klionsky D. J., Herman P. K., Emr S. D.. ( 1990;). The fungal vacuole: composition, function, and biogenesis. Microbiol Rev54:266–292[PubMed]
    [Google Scholar]
  15. Li S. C., Kane P. M.. ( 2009;). The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta1793:650–663 [CrossRef][PubMed]
    [Google Scholar]
  16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. ( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  17. Mason D. A., Shulga N., Undavai S., Ferrando-May E., Rexach M. F., Goldfarb D. S.. ( 2005;). Increased nuclear envelope permeability and Pep4p-dependent degradation of nucleoporins during hydrogen peroxide-induced cell death. FEMS Yeast Res5:1237–1251 [CrossRef][PubMed]
    [Google Scholar]
  18. Michaillat L., Baars T. L., Mayer A.. ( 2012;). Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell23:881–895 [CrossRef][PubMed]
    [Google Scholar]
  19. Miseta A., Kellermayer R., Aiello D. P., Fu L., Bedwell D. M.. ( 1999;). The vacuolar Ca2+/H+ exchanger Vcx1p/Hum1p tightly controls cytosolic Ca2+ levels in S. cerevisiae . FEBS Lett451:132–136 [CrossRef][PubMed]
    [Google Scholar]
  20. Pereira C., Chaves S., Alves S., Salin B., Camougrand N., Manon S., Sousa M. J., Côrte-Real M.. ( 2010;). Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol76:1398–1410 [CrossRef][PubMed]
    [Google Scholar]
  21. Plant P. J., Manolson M. F., Grinstein S., Demaurex N.. ( 1999;). Alternative mechanisms of vacuolar acidification in H+-ATPase-deficient yeast. J Biol Chem274:37270–37279 [CrossRef][PubMed]
    [Google Scholar]
  22. Premsler T., Zahedi R. P., Lewandrowski U., Sickmann A.. ( 2009;). Recent advances in yeast organelle and membrane proteomics. Proteomics9:4731–4743 [CrossRef][PubMed]
    [Google Scholar]
  23. Ricarte F., Menjivar R., Chhun S., Soreta T., Oliveira L., Hsueh T., Serranilla M., Gharakhanian E.. ( 2011;). A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology. PLoS ONE6:e23696 [CrossRef][PubMed]
    [Google Scholar]
  24. Sarry J. E., Chen S., Collum R. P., Liang S., Peng M., Lang A., Naumann B., Dzierszinski F., Yuan C. X. et al. ( 2007;). Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae . FEBS J274:4287–4305 [CrossRef][PubMed]
    [Google Scholar]
  25. Schauer A., Knauer H., Ruckenstuhl C., Fussi H., Durchschlag M., Potocnik U., Fröhlich K. U.. ( 2009;). Vacuolar functions determine the mode of cell death. Biochim Biophys Acta1793:540–545 [CrossRef][PubMed]
    [Google Scholar]
  26. Silva R. D., Manon S., Gonçalves J., Saraiva L., Côrte-Real M.. ( 2011;). Modulation of Bax mitochondrial insertion and induced cell death in yeast by mammalian protein kinase Cα. Exp Cell Res317:781–790 [CrossRef][PubMed]
    [Google Scholar]
  27. Sousa M. J., Azevedo F., Pedras A., Marques C., Coutinho O. P., Preto A., Gerós H., Chaves S. R., Côrte-Real M.. ( 2011;). Vacuole–mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome–mitochondria-mediated apoptosis in mammals. Biochem Soc Trans39:1533–1537 [CrossRef][PubMed]
    [Google Scholar]
  28. Tohge T., Ramos M. S., Nunes-Nesi A., Mutwil M., Giavalisco P., Steinhauser D., Schellenberg M., Willmitzer L., Persson S. et al. ( 2011;). Toward the storage metabolome: profiling the barley vacuole. Plant Physiol157:1469–1482 [CrossRef][PubMed]
    [Google Scholar]
  29. Wickner W.. ( 2002;). Yeast vacuoles and membrane fusion pathways. EMBO J21:1241–1247 [CrossRef][PubMed]
    [Google Scholar]
  30. Wiederhold E., Gandhi T., Permentier H. P., Breitling R., Poolman B., Slotboom D. J.. ( 2009;). The yeast vacuolar membrane proteome. Mol Cell Proteomics8:380–392[PubMed][CrossRef]
    [Google Scholar]
  31. Zhang Y. Q., Gamarra S., Garcia-Effron G., Park S., Perlin D. S., Rao R.. ( 2010;). Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog6:e1000939 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062570-0
Loading
/content/journal/micro/10.1099/mic.0.062570-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error