1887

Abstract

FadR, a member of the GntR family of transcription factors, plays dual roles in fatty acid metabolism. FadR–DNA binding is inhibited by fatty acyl-CoAs, and thus FadR acts as a sensor of the fatty acid level in bacteria. We have identified FadR-binding sites in the upstream regions of genes showing altered expression after the disruption of fatty acid biosynthesis in . A FadR homologue in , Rv0494, was identified, which binds to its operator in the upstream region of the operon. We have shown that FadR (Rv0494) directly binds to long-chain fatty acyl-CoA and that binding quenches the intrinsic fluorescence of the purified protein. FadR–DNA binding can be impaired by long-chain fatty acyl-CoA compounds. Overexpression of Rv0494 in BCG reduced the basal level expression of operon genes, thereby suggesting the repressor nature of this protein in fatty acid synthase II regulation. This is the first report, to the best of our knowledge, of a GntR/FadR family protein acting as a fatty acid-responsive transcriptional regulator in , suggesting a possible role for this protein in mycolic acid biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066654-0
2013-05-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/913.html?itemId=/content/journal/micro/10.1099/mic.0.066654-0&mimeType=html&fmt=ahah

References

  1. Betts J. C., McLaren A., Lennon M. G., Kelly F. M., Lukey P. T., Blakemore S. J., Duncan K.. ( 2003;). Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. . Antimicrob Agents Chemother 47:, 2903–2913. [CrossRef][PubMed]
    [Google Scholar]
  2. Campbell J. W., Cronan J. E. Jr. ( 2001;). Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. . J Bacteriol 183:, 5982–5990. [CrossRef][PubMed]
    [Google Scholar]
  3. Casadaban M. J., Cohen S. N.. ( 1980;). Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. . J Mol Biol 138:, 179–207. [CrossRef][PubMed]
    [Google Scholar]
  4. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. et al. ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. . Nature 393:, 537–544. [CrossRef][PubMed]
    [Google Scholar]
  5. Cronan J. E. Jr, Subrahmanyam S.. ( 1998;). FadR, transcriptional co-ordination of metabolic expediency. . Mol Microbiol 29:, 937–943. [CrossRef][PubMed]
    [Google Scholar]
  6. DiRusso C. C., Heimert T. L., Metzger A. K.. ( 1992;). Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. . J Biol Chem 267:, 8685–8691.[PubMed]
    [Google Scholar]
  7. DiRusso C. C., Metzger A. K., Heimert T. L.. ( 1993;). Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR. . Mol Microbiol 7:, 311–322. [CrossRef][PubMed]
    [Google Scholar]
  8. Feng Y., Cronan J. E.. ( 2009a;). Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. . J Biol Chem 284:, 29526–29535. [CrossRef][PubMed]
    [Google Scholar]
  9. Feng Y., Cronan J. E.. ( 2009b;). A new member of Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW). . J Bacteriol 191:, 6320–6328. [CrossRef][PubMed]
    [Google Scholar]
  10. Feng Y., Cronan J. E.. ( 2010;). Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA. . J Bacteriol 192:, 4289–4299. [CrossRef][PubMed]
    [Google Scholar]
  11. Feng Y., Cronan J. E.. ( 2011;). Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters. . Mol Microbiol 80:, 195–218. [CrossRef][PubMed]
    [Google Scholar]
  12. Fu L. M.. ( 2006;). Exploring drug action on Mycobacterium tuberculosis using affymetrix oligonucleotide genechips. . Tuberculosis (Edinb) 86:, 134–143. [CrossRef][PubMed]
    [Google Scholar]
  13. Gupta N., Singh B. N.. ( 2008;). Deciphering kas operon locus in Mycobacterium aurum and genesis of a recombinant strain for rational-based drug screening. . J Appl Microbiol 105:, 1703–1710. [CrossRef][PubMed]
    [Google Scholar]
  14. Hartkoorn R. C., Sala C., Uplekar S., Busso P., Rougemont J., Cole S. T.. ( 2012;). Genome-wide definition of the SigF regulon in Mycobacterium tuberculosis. . J Bacteriol 194:, 2001–2009. [CrossRef][PubMed]
    [Google Scholar]
  15. Heath R. J., White S. W., Rock C. O.. ( 2001;). Lipid biosynthesis as a target for antibacterial agents. . Prog Lipid Res 40:, 467–497. [CrossRef][PubMed]
    [Google Scholar]
  16. Henry M. F., Cronan J. E. Jr. ( 1992;). A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. . Cell 70:, 671–679. [CrossRef][PubMed]
    [Google Scholar]
  17. Iram S. H., Cronan J. E.. ( 2005;). Unexpected functional diversity among FadR fatty acid transcriptional regulatory proteins. . J Biol Chem 280:, 32148–32156. [CrossRef][PubMed]
    [Google Scholar]
  18. Khan S. R., Gaines J., Roop R. M. II, Farrand S. K.. ( 2008;). Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. . Appl Environ Microbiol 74:, 5053–5062. [CrossRef][PubMed]
    [Google Scholar]
  19. Mdluli K., Slayden R. A., Zhu Y., Ramaswamy S., Pan X., Mead D., Crane D. D., Musser J. M., Barry C. E. III. ( 1998;). Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. . Science 280:, 1607–1610. [CrossRef][PubMed]
    [Google Scholar]
  20. Raman N., DiRusso C. C.. ( 1995;). Analysis of acyl coenzyme A binding to the transcription factor FadR and identification of amino acid residues in the carboxyl terminus required for ligand binding. . J Biol Chem 270:, 1092–1097. [CrossRef][PubMed]
    [Google Scholar]
  21. Raman N., Black P. N., DiRusso C. C.. ( 1997;). Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains. . J Biol Chem 272:, 30645–30650. [CrossRef][PubMed]
    [Google Scholar]
  22. Robison K., McGuire A. M., Church G. M.. ( 1998;). A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. . J Mol Biol 284:, 241–254. [CrossRef][PubMed]
    [Google Scholar]
  23. Salzman V., Mondino S., Sala C., Cole S. T., Gago G., Gramajo H.. ( 2010;). Transcriptional regulation of lipid homeostasis in mycobacteria. . Mol Microbiol 78:, 64–77.[PubMed]
    [Google Scholar]
  24. Singh A. K., Singh B. N.. ( 2009;). Differential expression of sigH paralogs during growth and under different stress conditions in Mycobacterium smegmatis. . J Bacteriol 191:, 2888–2893. [CrossRef][PubMed]
    [Google Scholar]
  25. Slayden R. A., Barry C. E. III. ( 2002;). The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. . Tuberculosis (Edinb) 82:, 149–160. [CrossRef][PubMed]
    [Google Scholar]
  26. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H. et al. ( 1991;). New use of BCG for recombinant vaccines. . Nature 351:, 456–460. [CrossRef][PubMed]
    [Google Scholar]
  27. Takayama K., Wang C., Besra G. S.. ( 2005;). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. . Clin Microbiol Rev 18:, 81–101. [CrossRef][PubMed]
    [Google Scholar]
  28. van Aalten D. M., DiRusso C. C., Knudsen J., Wierenga R. K.. ( 2000;). Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. . EMBO J 19:, 5167–5177. [CrossRef][PubMed]
    [Google Scholar]
  29. Vindal V., Ranjan S., Ranjan A.. ( 2007a;). In silico analysis and characterization of GntR family of regulators from Mycobacterium tuberculosis. . Tuberculosis (Edinb) 87:, 242–247. [CrossRef][PubMed]
    [Google Scholar]
  30. Vindal V., Suma K., Ranjan A.. ( 2007b;). GntR family of regulators in Mycobacterium smegmatis: a sequence and structure based characterization. . BMC Genomics 8:, 289. [CrossRef][PubMed]
    [Google Scholar]
  31. Vindal V., Ashwantha Kumar E., Ranjan A.. ( 2008;). Identification of operator sites within the upstream region of the putative mce2R gene from mycobacteria. . FEBS Lett 582:, 1117–1122. [CrossRef][PubMed]
    [Google Scholar]
  32. Waddell S. J., Stabler R. A., Laing K., Kremer L., Reynolds R. C., Besra G. S.. ( 2004;). The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. . Tuberculosis (Edinb) 84:, 263–274. [CrossRef][PubMed]
    [Google Scholar]
  33. Wilson M., DeRisi J., Kristensen H. H., Imboden P., Rane S., Brown P. O., Schoolnik G. K.. ( 1999;). Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. . Proc Natl Acad Sci U S A 96:, 12833–12838. [CrossRef][PubMed]
    [Google Scholar]
  34. Zhang Y. M., Marrakchi H., Rock C. O.. ( 2002;). The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli. . J Biol Chem 277:, 15558–15565. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066654-0
Loading
/content/journal/micro/10.1099/mic.0.066654-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error