1887

Abstract

The signalling molecule bis-(3′–5′)-cyclic-dimeric guanosine monophosphate (c-di-GMP) is a central regulator of diverse cellular functions, including motility, biofilm formation, cell cycle progression and virulence, in bacteria. Multiple diguanylate cyclase and phosphodiesterase-domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) modulate the levels of the second messenger c-di-GMP to transmit signals and obtain such specific cellular responses. In the genus this c-di-GMP network is poorly studied. In this work, we evaluated the expression of two phenotypes in regulated by c-di-GMP, biofilm formation and motility, under the influence of ectopic expression of proteins with EAL or GGDEF domains that regulates the c-di-GMP level. In agreement with previous reports for other bacteria, we observed that is able to form biofilm and reduce its motility only when GGDEF domain protein is expressed. Moreover we identify a GGDEF domain protein (BB3576) with diguanylate cyclase activity that participates in motility and biofilm regulation in . These results demonstrate for the first time, to our knowledge, the presence of c-di-GMP regulatory signalling in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064345-0
2013-05-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/869.html?itemId=/content/journal/micro/10.1099/mic.0.064345-0&mimeType=html&fmt=ahah

References

  1. Akerley B. J., Miller J. F.. ( 1993;). Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol175:3468–3479[PubMed]
    [Google Scholar]
  2. Akerley B. J., Monack D. M., Falkow S., Miller J. F.. ( 1992;). The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica . J Bacteriol174:980–990[PubMed]
    [Google Scholar]
  3. Amarasinghe J. J., D’Hondt R. E., Waters C. M., Mantis N. J.. ( 2013;). Exposure of Salmonella enterica Serovar Typhimurium to a protective monoclonal IgA triggers exopolysaccharide production via a diguanylate cyclase-dependent pathway. Infect Immun81:653–664 [CrossRef][PubMed]
    [Google Scholar]
  4. Amikam D., Galperin M. Y.. ( 2006;). PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics22:3–6 [CrossRef][PubMed]
    [Google Scholar]
  5. Anantharaman V., Aravind L.. ( 2000;). Cache – a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci25:535–537 [CrossRef][PubMed]
    [Google Scholar]
  6. Conover M. S., Mishra M., Deora R.. ( 2011;). Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS ONE6:e16861 [CrossRef][PubMed]
    [Google Scholar]
  7. Cotter P. A., Miller J. F.. ( 1997;). A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol24:671–685 [CrossRef][PubMed]
    [Google Scholar]
  8. Dombrecht B., Vanderleyden J., Michiels J.. ( 2001;). Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in Gram-negative bacteria. Mol Plant Microbe Interact14:426–430 [CrossRef][PubMed]
    [Google Scholar]
  9. Fernández J., Sisti F., Bottero D., Gaillard M. E., Hozbor D.. ( 2005;). Constitutive expression of bvgR-repressed factors is not detrimental to the Bordetella bronchiseptica–host interaction. Res Microbiol156:843–850 [CrossRef][PubMed]
    [Google Scholar]
  10. Galperin M. Y.. ( 2004;). Bacterial signal transduction network in a genomic perspective. Environ Microbiol6:552–567 [CrossRef][PubMed]
    [Google Scholar]
  11. Galperin M. Y.. ( 2005;). A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol5:35 [CrossRef][PubMed]
    [Google Scholar]
  12. Galperin M. Y.. ( 2006;). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol188:4169–4182 [CrossRef][PubMed]
    [Google Scholar]
  13. Galperin M. Y., Nikolskaya A. N., Koonin E. V.. ( 2001;). Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett203:11–21 [CrossRef][PubMed]
    [Google Scholar]
  14. Goodnow R. A.. ( 1980;). Biology of Bordetella bronchiseptica . Microbiol Rev44:722–738[PubMed]
    [Google Scholar]
  15. Harvill E. T., Cotter P. A., Yuk M. H., Miller J. F.. ( 1999;). Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect Immun67:1493–1500[PubMed]
    [Google Scholar]
  16. Harvill E. T., Preston A., Cotter P. A., Allen A. G., Maskell D. J., Miller J. F.. ( 2000;). Multiple roles for Bordetella lipopolysaccharide molecules during respiratory tract infection. Infect Immun68:6720–6728 [CrossRef][PubMed]
    [Google Scholar]
  17. Hengge R.. ( 2009;). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol7:263–273 [CrossRef][PubMed]
    [Google Scholar]
  18. Inatsuka C. S., Xu Q., Vujkovic-Cvijin I., Wong S., Stibitz S., Miller J. F., Cotter P. A.. ( 2010;). Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun78:2901–2909 [CrossRef][PubMed]
    [Google Scholar]
  19. Irie Y., Mattoo S., Yuk M. H.. ( 2004;). The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica . J Bacteriol186:5692–5698 [CrossRef][PubMed]
    [Google Scholar]
  20. Jenal U., Malone J.. ( 2006;). Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet40:385–407 [CrossRef][PubMed]
    [Google Scholar]
  21. Kolter R., Greenberg E. P.. ( 2006;). Microbial sciences: the superficial life of microbes. Nature441:300–302 [CrossRef][PubMed]
    [Google Scholar]
  22. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  23. Kulesekara H., Lee V., Brencic A., Liberati N., Urbach J., Miyata S., Lee D. G., Neely A. N., Hyodo M. et al. ( 2006;). Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′–5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A103:2839–2844 [CrossRef][PubMed]
    [Google Scholar]
  24. Lai T. H., Kumagai Y., Hyodo M., Hayakawa Y., Rikihisa Y.. ( 2009;). The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic di-GMP in host cell infection. J Bacteriol191:693–700 [CrossRef][PubMed]
    [Google Scholar]
  25. Mattoo S., Cherry J. D.. ( 2005;). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev18:326–382 [CrossRef][PubMed]
    [Google Scholar]
  26. McMillan D. J., Shojaei M., Chhatwal G. S., Guzmán C. A., Walker M. J.. ( 1996;). Molecular analysis of the bvg-repressed urease of Bordetella bronchiseptica . Microb Pathog21:379–394 [CrossRef][PubMed]
    [Google Scholar]
  27. Merkel T. J., Barros C., Stibitz S.. ( 1998;). Characterization of the bvgR locus of Bordetella pertussis . J Bacteriol180:1682–1690[PubMed]
    [Google Scholar]
  28. Mikkelsen H., Ball G., Giraud C., Filloux A.. ( 2009;). Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS ONE4:e6018 [CrossRef][PubMed]
    [Google Scholar]
  29. Mishra M., Parise G., Jackson K. D., Wozniak D. J., Deora R.. ( 2005;). The BvgAS signal transduction system regulates biofilm development in Bordetella . J Bacteriol187:1474–1484 [CrossRef][PubMed]
    [Google Scholar]
  30. Newell P. D., Yoshioka S., Hvorecny K. L., Monds R. D., O’Toole G. A.. ( 2011;). Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1. J Bacteriol193:4685–4698 [CrossRef][PubMed]
    [Google Scholar]
  31. Pesavento C., Becker G., Sommerfeldt N., Possling A., Tschowri N., Mehlis A., Hengge R.. ( 2008;). Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli . Genes Dev22:2434–2446 [CrossRef][PubMed]
    [Google Scholar]
  32. Römling U., Amikam D.. ( 2006;). Cyclic di-GMP as a second messenger. Curr Opin Microbiol9:218–228 [CrossRef][PubMed]
    [Google Scholar]
  33. Sanchez-Torres V., Hu H., Wood T. K.. ( 2011;). GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli . Appl Microbiol Biotechnol90:651–658 [CrossRef][PubMed]
    [Google Scholar]
  34. Sisti F., Fernández J., Rodríguez M. E., Lagares A., Guiso N., Hozbor D. F.. ( 2002;). In vitro and in vivo characterization of a Bordetella bronchiseptica mutant strain with a deep rough lipopolysaccharide structure. Infect Immun70:1791–1798 [CrossRef][PubMed]
    [Google Scholar]
  35. Skinner J. A., Reissinger A., Shen H., Yuk M. H.. ( 2004;). Bordetella type III secretion and adenylate cyclase toxin synergize to drive dendritic cells into a semimature state. J Immunol173:1934–1940[PubMed][CrossRef]
    [Google Scholar]
  36. Sloan G. P., Love C. F., Sukumar N., Mishra M., Deora R.. ( 2007;). The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol189:8270–8276 [CrossRef][PubMed]
    [Google Scholar]
  37. Stainer D. W., Scholte M. J.. ( 1970;). A simple chemically defined medium for the production of phase I Bordetella pertussis . J Gen Microbiol63:211–220[PubMed][CrossRef]
    [Google Scholar]
  38. Stockbauer K. E., Fuchslocher B., Miller J. F., Cotter P. A.. ( 2001;). Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol Microbiol39:65–78 [CrossRef][PubMed]
    [Google Scholar]
  39. Wan X., Tuckerman J. R., Saito J. A., Freitas T. A., Newhouse J. S., Denery J. R., Galperin M. Y., Gonzalez G., Gilles-Gonzalez M. A., Alam M.. ( 2009;). Globins synthesize the second messenger bis-(3′–5′)-cyclic diguanosine monophosphate in bacteria. J Mol Biol388:262–270 [CrossRef][PubMed]
    [Google Scholar]
  40. Williams C. L., Cotter P. A.. ( 2007;). Autoregulation is essential for precise temporal and steady-state regulation by the Bordetella BvgAS phosphorelay. J Bacteriol189:1974–1982 [CrossRef][PubMed]
    [Google Scholar]
  41. Wolfe A. J., Visick K. L.. ( 2008;). Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol190:463–475 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064345-0
Loading
/content/journal/micro/10.1099/mic.0.064345-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error