1887

Abstract

Various species of the plant genus are traditionally used as medicine for sundry ailments and some of them have been shown recently to quench the virulence of Gram-positive and Gram-negative bacteria. Cell-to-cell communication mechanisms, quorum sensing (QS) in particular, are key regulators of virulence in many pathogenic bacteria. Screening n-hexane extracts of leaves, roots and bark of endemic Malagasy species for their capacity to antagonize QS mechanisms in PAO1 showed that many reduced the expression of the QS-regulated genes and . However, only the extract of bark (DTB) showed a significant reduction of QS gene expression without any effect on the gene encoding a QS-independent isocitrate lyase. Further characterization of DTB impact on QS revealed that the QS systems and are inhibited and that swarming, twitching, biofilm formation and the production of pyocyanin, elastase and proteases are also hampered in the presence of the DTB extract. Importantly, compared with the known QS inhibitor naringenin, the DTB extract showed a stronger negative effect on twitching, biofilm formation and tobramycin resistance. Preliminary structural characterization of these potent biofilm disrupters suggests that they belong to the phytosterols. The strong inhibition of motility and biofilm formation suggests that the DTB extract contains agents disrupting biofilm architecture, which is an important observation in the context of the design of new drugs targeting biofilm-encapsulated pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064378-0
2013-05-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/924.html?itemId=/content/journal/micro/10.1099/mic.0.064378-0&mimeType=html&fmt=ahah

References

  1. Barrett M. A., Brown J. L., Morikawa M. K., Labat J.-N., Yoder A. D.. ( 2010;). Conservation. CITES designation for endangered rosewood in Madagascar. Science328:1109–1110 [CrossRef][PubMed]
    [Google Scholar]
  2. Bjarnsholt T., Givskov M.. ( 2007;). The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa . Anal Bioanal Chem387:409–414 [CrossRef][PubMed]
    [Google Scholar]
  3. Bjarnsholt T., Givskov M.. ( 2008;). Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort?. Curr Infect Dis Rep10:22–28 [CrossRef][PubMed]
    [Google Scholar]
  4. Bjarnsholt T., Tolker-Nielsen T., Høiby N., Givskov M.. ( 2010;). Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med12:e11 [CrossRef][PubMed]
    [Google Scholar]
  5. Bodini S. F., Manfredini S., Epp M., Valentini S., Santori F.. ( 2009;). Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Lett Appl Microbiol49:551–555 [CrossRef][PubMed]
    [Google Scholar]
  6. Bosser J., Rabevohitra R.. ( 2002;). The tribe of Dalbergiaea . The Leguminosae of Madagascar321–361 Du Puy D. J., Labat J. N., Rabevohitra R., Villiers J. F., Bosser J., Moat J.. Kew, UK: Royal Botanic Gardens;
    [Google Scholar]
  7. Bosser J., Rabevohitra R.. ( 2005;). Espèces nouvelles dans le genre Dalbergia (Fabaceae, Papilionaceae) à Madagascar. Adansonia27:209–216
    [Google Scholar]
  8. Brackman G., Celen S., Hillaert U., Van Calenbergh S., Cos P., Maes L., Nelis H. J., Coenye T.. ( 2011;). Structure–activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS ONE6:e16084 [CrossRef][PubMed]
    [Google Scholar]
  9. Brijesh S., Daswani P. G., Tetali P., Antia N. H., Birdi T. J.. ( 2006;). Studies on Dalbergia sissoo (Roxb.) leaves: possible mechanism(s) of action in infectious diarrhea. Indian J Pharmacol38:46–48
    [Google Scholar]
  10. Brint J. M., Ohman D. E.. ( 1995;). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol177:7155–7163[PubMed]
    [Google Scholar]
  11. Caballero A. R., Moreau J. M., Engel L. S., Marquart M. E., Hill J. M., O’Callaghan R. J.. ( 2001;). Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Anal Biochem290:330–337 [CrossRef][PubMed]
    [Google Scholar]
  12. Caiazza N. C., Shanks R. M. Q., O’Toole G. A.. ( 2005;). Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa . J Bacteriol187:7351–7361 [CrossRef][PubMed]
    [Google Scholar]
  13. Chevrot R., Rosen R., Haudecoeur E., Cirou A., Shelp B. J., Ron E., Faure D.. ( 2006;). GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens . Proc Natl Acad Sci U S A103:7460–7464 [CrossRef][PubMed]
    [Google Scholar]
  14. Chrzanowski L., Ławniczak L., Czaczyk K.. ( 2012;). Why do microorganisms produce rhamnolipids?. World J Microbiol Biotechnol28:401–419 [CrossRef][PubMed]
    [Google Scholar]
  15. Collins F. W., McLachlan D. C., Blackwell B. A.. ( 1991;). Oat phenolics: avenalumic acids, a new group of bound phenolic acids from oat groats and hulls. Cereal Chem68:184–189
    [Google Scholar]
  16. Daniels R., Vanderleyden J., Michiels J.. ( 2004;). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev28:261–289 [CrossRef][PubMed]
    [Google Scholar]
  17. Darzins A.. ( 1993;). The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J Bacteriol175:5934–5944[PubMed]
    [Google Scholar]
  18. Davey M. E., Caiazza N. C., O’Toole G. A.. ( 2003;). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol185:1027–1036 [CrossRef][PubMed]
    [Google Scholar]
  19. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P.. ( 1998;). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280:295–298 [CrossRef][PubMed]
    [Google Scholar]
  20. Deep A., Chaudhary U., Gupta V.. ( 2011;). Quorum sensing and bacterial pathogenicity: from molecules to disease. J Lab Physicians3:4–11 [CrossRef][PubMed]
    [Google Scholar]
  21. Dekimpe V., Déziel E.. ( 2009;). Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology155:712–723 [CrossRef][PubMed]
    [Google Scholar]
  22. Déziel E., Lépine F., Milot S., Villemur R.. ( 2003;). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology149:2005–2013 [CrossRef][PubMed]
    [Google Scholar]
  23. Du Puy D. J., Labat J. N., Rabevohitra R., Villiers J.-F., Bosser J., Moat J.. ( 2002;). The Leguminosae of Madagascar Kew, UK: Royal Botanic Gardens;
    [Google Scholar]
  24. English B. K., Gaur A. H.. ( 2010;). The use and abuse of antibiotics and the development of antibiotic resistance. Adv Exp Med Biol659:73–82 [CrossRef][PubMed]
    [Google Scholar]
  25. Epps L. C., Walker P. D.. ( 2006;). Fluoroquinolone consumption and emerging resistance. US Pharmacist31:47–56
    [Google Scholar]
  26. Favre-Bonté S., Köhler T., Van Delden C.. ( 2003;). Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother52:598–604 [CrossRef][PubMed]
    [Google Scholar]
  27. Fraser G. M., Hughes C.. ( 1999;). Swarming motility. Curr Opin Microbiol2:630–635 [CrossRef][PubMed]
    [Google Scholar]
  28. Gambello M. J., Iglewski B. H.. ( 1991;). Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol173:3000–3009[PubMed]
    [Google Scholar]
  29. Gambello M. J., Kaye S., Iglewski B. H.. ( 1993;). LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun61:1180–1184[PubMed]
    [Google Scholar]
  30. Girard G., Bloemberg G. V.. ( 2008;). Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa . Future Microbiol3:97–106 [CrossRef][PubMed]
    [Google Scholar]
  31. Glessner A., Smith R. S., Iglewski B. H., Robinson J. B.. ( 1999;). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol181:1623–1629[PubMed]
    [Google Scholar]
  32. Gundidza M., Gaza N.. ( 1993;). Antimicrobial activity of Dalbergia melanoxylon extracts. J Ethnopharmacol40:127–130 [CrossRef][PubMed]
    [Google Scholar]
  33. Gupta R. K., Setia S., Harjai K.. ( 2011;). Expression of quorum sensing and virulence factors are interlinked in Pseudomonas aeruginosa: an in vitro approach. Am J Biomed Sci3:116–125 [CrossRef]
    [Google Scholar]
  34. Harshey R. M.. ( 1994;). Bees aren’t the only ones: swarming in gram-negative bacteria. Mol Microbiol13:389–394 [CrossRef][PubMed]
    [Google Scholar]
  35. Hentzer M., Givskov M.. ( 2003;). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest112:1300–1307[PubMed][CrossRef]
    [Google Scholar]
  36. Hentzer M., Riedel K., Rasmussen T. B., Heydorn A., Andersen J. B., Parsek M. R., Rice S. A., Eberl L., Molin S. et al. ( 2002;). Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology148:87–102[PubMed]
    [Google Scholar]
  37. Ishida T., Ikeda T., Takiguchi N., Kuroda A., Ohtake H., Kato J.. ( 2007;). Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl Environ Microbiol73:3183–3188 [CrossRef][PubMed]
    [Google Scholar]
  38. Ito A., Taniuchi A., May T., Kawata K., Okabe S.. ( 2009;). Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol75:4093–4100 [CrossRef][PubMed]
    [Google Scholar]
  39. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al. ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A100:14339–14344 [CrossRef][PubMed]
    [Google Scholar]
  40. Jakobsen T. H., van Gennip M., Phipps R. K., Shanmugham M. S., Christensen L. D., Alhede M., Skindersoe M. E., Rasmussen T. B., Friedrich K. et al. ( 2012;). Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother56:2314–2325 [CrossRef][PubMed]
    [Google Scholar]
  41. Jermain J. D., Evans H. K.. ( 2009;). Analyzing Salvia divinorum and its active ingredient salvinorin A utilizing thin layer chromatography and gas chromatography/mass spectrometry. Forensic Sci54:612–616 [CrossRef]
    [Google Scholar]
  42. Jimenez P. N., Koch G., Thompson J. A., Xavier K. B., Cool R. H., Quax W. J.. ( 2012;). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa . Microbiol Mol Biol Rev76:46–65 [CrossRef][PubMed]
    [Google Scholar]
  43. Khalilzadeh P., Lajoie B., El Hage S., Furiga A., Baziard G., Berge M., Roques C.. ( 2010;). Growth inhibition of adherent Pseudomonas aeruginosa by an N-butanoyl-l-homoserine lactone analog. Can J Microbiol56:317–325 [CrossRef][PubMed]
    [Google Scholar]
  44. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T.. ( 2003a;). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol48:1511–1524 [CrossRef][PubMed]
    [Google Scholar]
  45. Klausen M., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T.. ( 2003b;). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol50:61–68 [CrossRef][PubMed]
    [Google Scholar]
  46. Köhler T., Curty L. K., Barja F., van Delden C., Pechère J. C.. ( 2000;). Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol182:5990–5996 [CrossRef][PubMed]
    [Google Scholar]
  47. Kretzschmar U., Khodaverdi V., Jeoung J. H., Görisch H.. ( 2008;). Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa . Arch Microbiol190:151–158 [CrossRef][PubMed]
    [Google Scholar]
  48. Landry R. M., An D., Hupp J. T., Singh P. K., Parsek M. R.. ( 2006;). Mucin–Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol59:142–151 [CrossRef][PubMed]
    [Google Scholar]
  49. Leu Y. L., Hwang T. L., Kuo P. C., Liou K. P., Huang B. S., Chen G. F.. ( 2012;). Constituents from Vigna vexillata and their anti-inflammatory activity. Int J Mol Sci13:9754–9768 [CrossRef][PubMed]
    [Google Scholar]
  50. Määttä K. R., Kamal-Eldin A., Törrönen A. R.. ( 2003;). High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J Agric Food Chem51:6736–6744 [CrossRef][PubMed]
    [Google Scholar]
  51. Mattick J. S.. ( 2002;). Type IV pili and twitching motility. Annu Rev Microbiol56:289–314 [CrossRef][PubMed]
    [Google Scholar]
  52. Müh U., Schuster M., Heim R., Singh A., Olson E. R., Greenberg E. P.. ( 2006;). Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother50:3674–3679 [CrossRef][PubMed]
    [Google Scholar]
  53. Ng W. L., Bassler B. L.. ( 2009;). Bacterial quorum-sensing network architectures. Annu Rev Genet43:197–222 [CrossRef][PubMed]
    [Google Scholar]
  54. O’Toole G. A., Kolter R.. ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304 [CrossRef][PubMed]
    [Google Scholar]
  55. Okwute S. K., Onyia R., Anene C., Amodu O. P.. ( 2009;). Protectant, insecticidal and antimicrobial potentials of Dalbergia saxatilis Hook f. (Fabaceae). Afr J Biotechnol8:6556–6560
    [Google Scholar]
  56. Patriquin G. M., Banin E., Gilmour C., Tuchman R., Greenberg E. P., Poole K.. ( 2008;). Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa . J Bacteriol190:662–671 [CrossRef][PubMed]
    [Google Scholar]
  57. Pearson J. P., Pesci E. C., Iglewski B. H.. ( 1997;). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol179:5756–5767[PubMed]
    [Google Scholar]
  58. Pesci E. C., Pearson J. P., Seed P. C., lglewski B. H.. ( 1997;). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol179:3127–3132[PubMed]
    [Google Scholar]
  59. Rajaonson S., Vandeputte O. M., Vereecke D., Kiendrebeogo M., Ralambofetra E., Stévigny C., Duez P., Rabemanantsoa C., Mol A. et al. ( 2011;). Virulence quenching with a prenylated isoflavanone renders the Malagasy legume Dalbergia pervillei resistant to Rhodococcus fascians . Environ Microbiol13:1236–1252 [CrossRef][PubMed]
    [Google Scholar]
  60. Rasmussen T. B., Bjarnsholt T., Skindersoe M. E., Hentzer M., Kristoffersen P., Kote M., Nielsen J., Eberl L., Givskov M.. ( 2005;). Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol187:1799–1814 [CrossRef][PubMed]
    [Google Scholar]
  61. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G.. ( 2002;). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol184:1140–1154 [CrossRef][PubMed]
    [Google Scholar]
  62. Schaefer A. L., Greenberg E. P., Oliver C. M., Oda Y., Huang J. J., Bittan-Banin G., Peres C. M., Schmidt S., Juhaszova K. et al. ( 2008;). A new class of homoserine lactone quorum-sensing signals. Nature454:595–599 [CrossRef][PubMed]
    [Google Scholar]
  63. Shrout J. D., Chopp D. L., Just C. L., Hentzer M., Givskov M., Parsek M. R.. ( 2006;). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol62:1264–1277 [CrossRef][PubMed]
    [Google Scholar]
  64. Smith R. S., Iglewski B. H.. ( 2003;). Pseudomonas aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol6:56–60 [CrossRef][PubMed]
    [Google Scholar]
  65. Soberón-Chávez G., Lépine F., Déziel E.. ( 2005;). Production of rhamnolipids by Pseudomonas aeruginosa . Appl Microbiol Biotechnol68:718–725 [CrossRef][PubMed]
    [Google Scholar]
  66. Stalikas C. D.. ( 2007;). Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci30:3268–3295 [CrossRef][PubMed]
    [Google Scholar]
  67. Stes E., Vandeputte O. M., El Jaziri M., Holsters M., Vereecke D.. ( 2011;). A successful bacterial coup d’état: how Rhodococcus fascians redirects plant development. Annu Rev Phytopathol49:69–86 [CrossRef][PubMed]
    [Google Scholar]
  68. Szabó M. A., Varga G. Z., Hohmann J., Schelz Z., Szegedi E., Amaral L., Molnár J.. ( 2010;). Inhibition of quorum-sensing signals by essential oils. Phytother Res24:782–786[PubMed]
    [Google Scholar]
  69. Tang H. B., DiMango E., Bryan R., Gambello M. J., Iglewski B. H., Goldberg J. B., Prince A.. ( 1996;). Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun64:37–43[PubMed]
    [Google Scholar]
  70. Teplitski M., Mathesius U., Rumbaugh K. P.. ( 2011;). Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev111:100–116 [CrossRef][PubMed]
    [Google Scholar]
  71. Tré-Hardy M., Macé C., El Manssouri N., Vanderbist F., Traore H., Devleeschouwer M. J.. ( 2009;). Effect of antibiotic co-administration on young and mature biofilms of cystic fibrosis clinical isolates: the importance of the biofilm model. Int J Antimicrob Agents33:40–45 [CrossRef][PubMed]
    [Google Scholar]
  72. Truchado P., Giménez-Bastida J. A., Larrosa M., Castro-Ibáñez I., Espín J. C., Tomás-Barberán F. A., García-Conesa M. T., Allende A.. ( 2012;). Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J Agric Food Chem60:8885–8894 [CrossRef][PubMed]
    [Google Scholar]
  73. Twining S. S., Kirschner S. E., Mahnke L. A., Frank D. W.. ( 1993;). Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Invest Ophthalmol Vis Sci34:2699–2712[PubMed]
    [Google Scholar]
  74. Van Delden C., Iglewski B. H.. ( 1998;). Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis4:551–560 [CrossRef][PubMed]
    [Google Scholar]
  75. Van Gennip M., Christensen L. D., Alhede M., Phipps R., Jensen P. O., Christophersen L., Pamp S. J., Moser C., Mikkelsen P. J. et al. ( 2009;). Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS117:537–546 [CrossRef][PubMed]
    [Google Scholar]
  76. Vandeputte O. M., Kiendrebeogo M., Rajaonson S., Diallo B., Mol A., El Jaziri M., Baucher M.. ( 2010;). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol76:243–253 [CrossRef][PubMed]
    [Google Scholar]
  77. Vandeputte O. M., Kiendrebeogo M., Rasamiravaka T., Stévigny C., Duez P., Rajaonson S., Diallo B., Mol A., Baucher M., El Jaziri M.. ( 2011;). The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology157:2120–2132 [CrossRef][PubMed]
    [Google Scholar]
  78. Vasudeva N., Vats M., Sharma S. K., Sardana S.. ( 2009;). Chemistry and biological activities of the genus Dalbergia – a review. Pharmacognosy Reviews3:307–319
    [Google Scholar]
  79. Vikram A., Jayaprakasha G. K., Jesudhasan P. R., Pillai S. D., Patil B. S.. ( 2010;). Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol109:515–527[PubMed]
    [Google Scholar]
  80. Vikram A., Jesudhasan P. R., Jayaprakasha G. K., Pillai S. D., Patil B. S.. ( 2011;). Citrus limonoids interfere with Vibrio harveyi cell–cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology157:99–110 [CrossRef][PubMed]
    [Google Scholar]
  81. Whiteley M., Lee K. M., Greenberg E. P.. ( 1999;). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:13904–13909 [CrossRef][PubMed]
    [Google Scholar]
  82. Williams P.. ( 2007;). Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology153:3923–3938 [CrossRef][PubMed]
    [Google Scholar]
  83. Yadav H., Yadav M., Jain S., Bhardwaj A., Singh V., Parkash O., Marotta F.. ( 2008;). Antimicrobial property of a herbal preparation containing Dalbergia sissoo and Datura tramonium with cow urine against pathogenic bacteria. Int J Immunopathol Pharmacol21:1013–1020[PubMed]
    [Google Scholar]
  84. Yuan Z. C., Edlind M. P., Liu P., Saenkham P., Banta L. M., Wise A. A., Ronzone E., Binns A. N., Kerr K., Nester E. W.. ( 2007;). The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium . Proc Natl Acad Sci U S A104:11790–11795 [CrossRef][PubMed]
    [Google Scholar]
  85. Yuan Z. C., Haudecoeur E., Faure D., Kerr K. F., Nester E. W.. ( 2008;). Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and γ-amino butyric acid reveals signalling cross-talk and Agrobacterium–plant co-evolution. Cell Microbiol10:2339–2354 [CrossRef][PubMed]
    [Google Scholar]
  86. Zeng Z., Qian L., Cao L., Tan H., Huang Y., Xue X., Shen Y., Zhou S.. ( 2008;). Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa . Appl Microbiol Biotechnol79:119–126 [CrossRef][PubMed]
    [Google Scholar]
  87. Zhang X., Bremer H.. ( 1995;). Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem270:11181–11189 [CrossRef][PubMed]
    [Google Scholar]
  88. Zhou Y. Y., Luo S. H., Yi T. S., Li C. H., Luo Q., Hua J., Liu Y., Li S. H.. ( 2011;). Secondary metabolites from Glycine soja and their growth inhibitory effect against Spodoptera litura . J Agric Food Chem59:6004–6010 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064378-0
Loading
/content/journal/micro/10.1099/mic.0.064378-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error