- Volume 155, Issue 6, 2009
Volume 155, Issue 6, 2009
- Review
-
-
-
The ecology, epidemiology and virulence of Enterococcus
More LessEnterococci are Gram-positive, catalase-negative, non-spore-forming, facultative anaerobic bacteria, which usually inhabit the alimentary tract of humans in addition to being isolated from environmental and animal sources. They are able to survive a range of stresses and hostile environments, including those of extreme temperature (5–65 °C), pH (4.5−10.0) and high NaCl concentration, enabling them to colonize a wide range of niches. Virulence factors of enterococci include the extracellular protein Esp and aggregation substances (Agg), both of which aid in colonization of the host. The nosocomial pathogenicity of enterococci has emerged in recent years, as well as increasing resistance to glycopeptide antibiotics. Understanding the ecology, epidemiology and virulence of Enterococcus species is important for limiting urinary tract infections, hepatobiliary sepsis, endocarditis, surgical wound infection, bacteraemia and neonatal sepsis, and also stemming the further development of antibiotic resistance.
-
-
- Cell And Molecular Biology Of Microbes
-
-
-
Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis
More LessProtein translocation via the Tat machinery in thylakoids and bacteria occurs through a cooperation between the TatA, TatB and TatC subunits, of which the TatC protein forms the initial Tat substrate-binding site. The Bacillus subtilis Tat machinery lacks TatB and comprises two separate TatAC complexes with distinct substrate specificities: PhoD is secreted by the TatAdCd complex, whereas YwbN is secreted by the TatAyCy complex. To study the role of the Gram-positive TatC proteins in Tat-dependent protein secretion efficiency, we applied several genetic engineering approaches to modify and analyse the B. subtilis TatCd and TatCy proteins. Cytoplasmic and transmembrane domain exchange between TatCd and TatCy resulted in stable chimeric proteins that were unable to secrete both known substrates of the B. subtilis Tat system. Site-directed mutagenesis of conserved residues in the N-terminal part of both TatC proteins revealed significant differences in the degree of importance of these residues between TatCd, TatCy and Escherichia coli TatC. In addition, two small C-terminal deletions in TatCy completely abolished YwbN translocation, indicating that this terminus is essential for Tat translocation activity. Important differences from previous observations for E. coli TatC and implications for substrate binding and translocation are discussed.
-
-
-
-
Characterization and subcellular localization of a bacterial flotillin homologue
More LessThe process of endospore formation in Bacillus subtilis is complex, requiring the generation of two distinct cell types, a forespore and larger mother cell. The development of these cell types is controlled and regulated by cell type-specific gene expression, activated by a σ-factor cascade. Activation of these cell type-specific sigma factors is coupled with the completion of polar septation. Here, we describe a novel protein, YuaG, a eukaryotic reggie/flotillin homologue that is involved in the early stages of sporulation of the Gram-positive model organism B. subtilis. YuaG localizes in discrete foci in the membrane and is highly dynamic. Purification of detergent-resistant membranes revealed that YuaG is associated with negatively charged phospholipids, e.g. phosphatidylglycerol (PG) or cardiolipin (CL). However, localization of YuaG is not always dependent on PG/CL in vivo. A yuaG disruption strain shows a delay in the onset of sporulation along with reduced sporulation efficiency, where the spores develop to a certain stage and then appear to be trapped at this stage. Our results indicate that YuaG is involved in the early stage of spore development, probably playing a role in the signalling cascade at the onset of sporulation.
-
-
-
Transmembrane topology of the AbsA1 sensor kinase of Streptomyces coelicolor
More LessThe sensor kinase AbsA1 (SCO3225) phosphorylates the response regulator AbsA2 (SCO3226) and dephosphorylates AbsA2∼P. The phosphorylated response regulator represses antibiotic biosynthesis operons in Streptomyces coelicolor. AbsA1 was predicted to have an atypical transmembrane topology, and the location of its signal-sensing domain is not readily obvious. To better understand this protein and to gain insight into its signal response mechanism, we determined its transmembrane topology using fusions of absA1 to egfp, which is believed to be the first application of this approach to transmembrane topology in the actinomycetes. Our results are in agreement with the in silico topological predictions and demonstrate that AbsA1 has five transmembrane domains, four near the N terminus and one near the C terminus. Unlike most sensor kinases, the largest extracellular portion of AbsA1 is at the C terminus.
-
-
-
Tellurite-mediated disabling of [4Fe–4S] clusters of Escherichia coli dehydratases
The tellurium oxyanion tellurite is toxic for most organisms and it seems to alter a number of intracellular targets. In this work the toxic effects of tellurite upon Escherichia coli [4Fe–4S] cluster-containing dehydratases was studied. Reactive oxygen species (ROS)-sensitive fumarase A (FumA) and aconitase B (AcnB) as well as ROS-resistant fumarase C (FumC) and aconitase A (AcnA) were assayed in cell-free extracts from tellurite-exposed cells in both the presence and absence of oxygen. While over 90 % of FumA and AcnB activities were lost in the presence of oxygen, no enzyme inactivation was observed in anaerobiosis. This result was not dependent upon protein biosynthesis, as determined using translation-arrested cells. Enzyme activity of purified FumA and AcnB was inhibited when exposed to an in vitro superoxide-generating, tellurite-reducing system (ITRS). No inhibitory effect was observed when tellurite was omitted from the ITRS. In vivo and in vitro reconstitution experiments with tellurite-damaged FumA and AcnB suggested that tellurite effects involve [Fe–S] cluster disabling. In fact, after exposing FumA to ITRS, released ferrous ion from the enzyme was demonstrated by spectroscopic analysis using the specific Fe2+ chelator 2,2′-bipyridyl. Subsequent spectroscopic paramagnetic resonance analysis of FumA exposed to ITRS showed the characteristic signal of an oxidatively inactivated [3Fe–4S]+ cluster. These results suggest that tellurite inactivates enzymes of this kind via a superoxide-dependent disabling of their [4Fe–4S] catalytic clusters.
-
-
-
Folding and trimerization of signal sequence-less mature TolC in the cytoplasm of Escherichia coli
More LessTolC is a multifunctional outer-membrane protein (OMP) of Escherichia coli that folds into a unique α/β-barrel structure. Previous studies have shown that unlike the biogenesis of β-barrel OMPs, such as porins, TolC assembles independently from known periplasmic folding factors. Yet, the assembly of TolC, like that of β-barrel OMPs, is dependent on BamA and BamD, two essential components of the β-barrel OMP assembly machinery. We have investigated the folding properties and cellular trafficking of a TolC derivative that lacks the entire signal sequence (TolCΔ2–22). A significant amount of TolCΔ2–22 was found to be soluble in the cytoplasm, and a fraction of it folded and trimerized into a conformation similar to that of the normal outer membrane-localized TolC protein. Some TolCΔ2–22 was found to associate with membranes, but failed to assume a wild-type-like folded conformation. The null phenotype of TolCΔ2–22 was exploited to isolate suppressor mutations, the majority of which mapped in secY. In the secY suppressor background, TolCΔ2–22 resumed normal function and folded like wild-type TolC. Proper membrane insertion could not be achieved upon in vitro incubation of cytoplasmically folded TolCΔ2–22 with purified outer membrane vesicles, showing that even though TolC is intrinsically capable of folding and trimerization, for successful integration into the outer membrane these events need to be tightly coupled to the insertion process, which is mediated by the Bam machinery. Genetic and biochemical data attribute the unique folding and assembly pathways of TolC to its large soluble α-helical domain.
-
-
-
Functional characterization of FlgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis
More LessWe describe here the functional characterization of the flgM gene in Yersinia pseudotuberculosis. Direct interaction of FlgM with the alternative sigma factor σ 28 (FliA) was first confirmed. A conserved region in the C-terminus of FlgM was found which included the σ 28 binding domain. By site-directed mutagenesis, bacterial two-hybrid analysis and Western blotting, the primary FlgM binding sites with σ 28 were shown to be Ile85, Ala86 and Leu89. A role for FlgM in swimming motility was demonstrated by inactivation of flgM and subsequent complementation in trans. Transcriptional fusion analyses showed differential gene expression of flhDC, fliA, flgM and fliC in the fliA and flgM mutants compared with the wild-type. flhDC expression was not influenced by σ 28 or FlgM while fliA expression was abolished in the fliA mutant and considerably reduced in the flgM mutant when compared to the wild-type, indicating that both FliA and FlgM can activate fliA transcription. Conversely, flgM transcription was higher in the fliA mutant when compared to the wild-type, suggesting that flgM transcription was repressed by σ 28. Interestingly, fliC expression was markedly increased in the flgM mutant, suggesting a negative regulatory role for FlgM in fliC expression. The transcription of other σ-dependent genes (cheW, flgD, flaA, csrA and fliZ) was also examined in fliA and flgM mutant backgrounds and this revealed that other σ-factors apart from σ 28 may be involved in flagellar biogenesis in Y. pseudotuberculosis. Taking together the motility phenotypes and effects of flgM mutation on the regulation of these key motility genes, we propose that the mechanisms regulating flagellar biogenesis in Y. pseudotuberculosis may differ from those described for other bacteria.
-
-
-
Effect of FliK mutation on the transcriptional activity of the σ 54 sigma factor RpoN in Helicobacter pylori
More LessHelicobacter pylori is a motile Gram-negative bacterium that colonizes and persists in the human gastric mucosa. The flagellum gene regulatory circuitry of H. pylori is unique in many aspects compared with the Salmonella/Escherichia coli paradigms, and some regulatory checkpoints remain unclear. FliK controls the hook length during flagellar assembly. Microarray analysis of a fliK-null mutant revealed increased transcription of genes under the control of the σ 54 sigma factor RpoN. This sigma factor has been shown to be responsible for transcription of the class II flagellar genes, including flgE and flaB. No genes higher in the flagellar hierarchy had altered expression, suggesting specific and localized FliK-dependent feedback on the RpoN regulon. FliK thus appears to be involved in three processes: hook-length control, export substrate specificity and control of RpoN transcriptional activity.
-
-
-
Pseudomonas aeruginosa Las quorum sensing autoinducer suppresses growth and biofilm production in Legionella species
Bacteria commonly communicate with each other by a cell-to-cell signalling mechanism known as quorum sensing (QS). Recent studies have shown that the Las QS autoinducer N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) of Pseudomonas aeruginosa performs a variety of functions not only in intraspecies communication, but also in interspecies and interkingdom interactions. In this study, we report the effects of Pseudomonas 3-oxo-C12-HSL on the growth and suppression of virulence factors in other bacterial species that frequently co-exist with Ps. aeruginosa in nature. It was found that 3-oxo-C12-HSL, but not its analogues, suppressed the growth of Legionella pneumophila in a dose-dependent manner. However, 3-oxo-C12-HSL did not exhibit a growth-suppressive effect on Serratia marcescens, Proteus mirabilis, Escherichia coli, Alcaligenes faecalis and Stenotrophomonas maltophilia. A concentration of 50 μM 3-oxo-C12-HSL completely inhibited the growth of L. pneumophila. Additionally, a significant suppression of biofilm formation was demonstrated in L. pneumophila exposed to 3-oxo-C12-HSL. Our results suggest that the Pseudomonas QS autoinducer 3-oxo-C12-HSL exerts both bacteriostatic and virulence factor-suppressive activities on L. pneumophila alone.
-
-
-
Meningococcal biofilm growth on an abiotic surface – a model for epithelial colonization?
More LessNeisseria meningitidis colonizes the human nasopharynx asymptomatically, often for prolonged periods, but occasionally invades from this site to cause life-threatening infection. In the nasopharynx aggregated organisms are closely attached to the epithelial surface, in a state in which the expression of components of the bacterial envelope differs significantly from that found in organisms multiplying exponentially in liquid phase culture or in the blood. We and others have hypothesized that here they are in the biofilm state, and to explore this we have investigated biofilm formation by the serogroup B strain MC58 on an abiotic surface, in a sorbarod system. Transcriptional changes were analysed, focusing on alteration in gene expression relevant to polysaccharide capsulation, lipooligosaccharide and outer-membrane protein synthesis – all phenotypes of importance in epithelial colonization. We report downregulation of genes controlling capsulation and the production of core oligosaccharide, and upregulation of genes encoding a range of outer-membrane components, reflecting phenotypic changes that have been established to occur in the colonizing state. A limited comparison with organisms recovered from an extended period of co-cultivation with epithelial cells suggests that this model system may better mirror natural colonization than do short-term meningococcal/epithelial cell co-cultivation systems. Modelling prolonged meningococcal colonization with a sorbarod system offers insight into gene expression during this important, but experimentally relatively inaccessible, phase of human infection.
-
-
-
Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii
More LessSurface adhesion plays an essential part in the survival of the commensal organism Streptococcus gordonii in the oral cavity as well as during opportunistic infections such as endocarditis. At least two types of cell surface protein involved in adhesion are found on the surface of Gram-positive bacteria: those anchored via an LPXTG motif by the enzyme sortase A (SrtA) and those associated with the cell surface by, as yet, unknown mechanisms. In srtA− mutants, LPXTG-containing proteins have been shown to be released rather than cross-linked to the cell wall. We have therefore used 2D gel electrophoresis of released proteins from an srtA− mutant as well as the wild-type strain, followed by peptide identification by MS, to identify a set of novel proteins predicted to be present on the surface of S. gordonii DL1. This includes two large LPXTG-linked proteins (SGO_0707 and SGO_1487), which both contain tandemly repeated sequences similar to those present in known fibrillar adhesins. A 5′-nucleotidase and a protein with a putative collagen-binding domain, both containing LPXTG motifs, were also identified. Anchorless proteins with known chaperone, stress response and elongation factor functions, apparently responsible for bacterial binding to keratinocytes and saliva-coated surfaces in the absence of the LPXTG-linked adhesins, were also associated with the cell surface. These data reveal a range of proteins to be present on the S. gordonii DL1 cell surface, the expression of which plays an important role in adhesion to epithelia and which represent likely candidates for novel virulence factors in S. gordonii.
-
-
-
The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity
The fungal cell wall is essential in maintaining cellular integrity and plays key roles in the interplay between fungal pathogens and their hosts. The PGA59 and PGA62 genes encode two short and related glycosylphosphatidylinositol-anchored cell wall proteins and their expression has been previously shown to be strongly upregulated when the human pathogen Candida albicans grows as biofilms. Using GFP fusion proteins, we have shown that Pga59 and Pga62 are cell-wall-located, N- and O-glycosylated proteins. The characterization of C. albicans pga59Δ/pga59Δ, pga62Δ/pga62Δ and pga59Δ/pga59Δ pga62Δ/pga62Δ mutants suggested a minor role of these two proteins in hyphal morphogenesis and that they are not critical to biofilm formation. Importantly, the sensitivity to different cell-wall-perturbing agents was altered in these mutants. In particular, simultaneous inactivation of PGA59 and PGA62 resulted in high sensitivity to Calcofluor white, Congo red and nikkomicin Z and in resistance to caspofungin. Furthermore, cell wall composition and observation by transmission electron microscopy indicated an altered cell wall structure in the mutant strains. Collectively, these data suggest that the cell wall proteins Pga59 and Pga62 contribute to cell wall stability and structure.
-
-
-
Small heat-shock protein Hsp12 contributes to yeast tolerance to freezing stress
More LessThe HSP12 gene encodes one of the two major small heat-shock proteins of Saccharomyces cerevisiae and is induced under different conditions, such as low and high temperatures, osmotic or oxidative stress and high sugar or ethanol concentrations. However, few studies could demonstrate any correlation between HSP12 deletion or overexpression and a phenotype of sensitivity/resistance, making it difficult to attribute a role for Hsp12p under several of these stress conditions. We investigated the possible role of Hsp12p in yeast freezing tolerance. Contrary to what would be expected, the hsp12 null mutant when subjected to prolonged storage at −20 °C showed an increased resistance to freezing when compared with the isogenic wild-type strain. Because the mutant strain displayed a higher intracellular trehalose concentration than the wild-type, which could mask the effect of manipulating HSP12, we overexpressed the HSP12 gene in a trehalose-6-phosphate synthase (TPS1) null mutant. The tps1Δ strain overexpressing HSP12 showed an increase in resistance to freezing storage, indicating that Hsp12p plays a role in freezing tolerance in a way that seems to be interchangeable with trehalose. In addition, we show that overexpression of HSP12 in this tps1Δ strain also increased resistance to heat shock and that absence of HSP12 compromises the ability of yeast cells to accumulate high levels of trehalose in response to a mild heat stress.
-
-
-
Population heterogeneity in Methylobacterium extorquens AM1
More LessHeterogeneity of cells within exponentially growing populations was addressed in a bacterium, the facultative methylotroph Methylobacterium extorquens AM1. A transcriptional fusion between a well-characterized methanol-inducible promoter (PmxaF ) and gfpuv was used with flow cytometry to analyse the distribution of gene expression in populations grown on either succinate or methanol, correlated with forward scatter as a measure of cell size. These cell populations were found to consist of three major subpopulations defined by cells that were actively growing and dividing, newly divided, and non-dividing. Through the use of flow cytometry, it was demonstrated that a significant percentage of the total population did not respond to carbon shift. In addition, these experiments demonstrated that a small subset of the total population was significantly brighter than the rest of the population and dominated fluorimetry data. These results were corroborated with a continuous flow-through system and laser scanning microscopy, confirming that subpopulations, not discernible in the population average, dominate population response. These results demonstrate that the combination of flow cytometry and microscopic single-cell analysis can be effectively used to determine the dynamics of subpopulations in population response. In addition, they support the concept that physiological diversity in isogenic populations can poise some proportion of the population to respond appropriately to changing conditions.
-
-
-
In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region
‘Candidatus Phytoplasma asteris’, onion yellows strain (OY), a mildly pathogenic line (OY-M), is a phytopathogenic bacterium transmitted by Macrosteles striifrons leafhoppers. OY-M contains two types of plasmids (EcOYM and pOYM), each of which possesses a gene encoding the putative transmembrane protein, ORF3. A non-insect-transmissible line of this phytoplasma (OY-NIM) has the corresponding plasmids (EcOYNIM and pOYNIM), but pOYNIM lacks orf3. Here we show that in OY-M, orf3 is transcribed from two putative promoters and that on EcOYNIM, one of the promoter sequences is mutated and the other deleted. We also show by immunohistochemical analysis that ORF3 is not expressed in OY-NIM-infected plants. Moreover, ORF3 protein seems to be preferentially expressed in OY-M-infected insects rather than in plants. We speculate that ORF3 may play a role in the interactions of OY with its insect host.
-
- Environmental And Evolutionary Microbiology
-
-
-
Removal of multi-heavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium – Brachybacterium sp. strain Mn32
More LessA deep-sea manganese-oxidizing bacterium, Brachybacterium sp. strain Mn32, showed high Mn(II) resistance (MIC 55 mM) and Mn(II)-oxidizing/removing abilities. Strain Mn32 removed Mn(II) by two pathways: (1) oxidizing soluble Mn(II) to insoluble biogenic Mn oxides – birnessite (δ-MnO2 group) and manganite (γ-MnOOH); (2) the biogenic Mn oxides further adsorb more Mn(II) from the culture. The generated biogenic Mn oxides surround the cell surfaces of strain Mn32 and provide a high capacity to adsorb Zn(II) and Ni(II). Mn(II) oxidation by strain Mn32 was inhibited by both sodium azide and o-phenanthroline, suggesting the involvement of a metalloenzyme which was induced by Mn(II). X-ray diffraction analysis showed that the crystal structures of the biogenic Mn oxides were different from those of commercial pyrolusite (β-MnO2 group) and fresh chemically synthesized vernadite (δ-MnO2 group). The biogenic Mn oxides generated by strain Mn32 showed two to three times higher Zn(II) and Ni(II) adsorption abilities than commercial and fresh synthetic MnO2. The crystal structure and the biogenic MnO2 types may be important factors for the high heavy metal adsorption ability of strain Mn32. This study provides potential applications of a new marine Mn(II)-oxidizing bacterium in heavy metal bioremediation and increases our basic knowledge of microbial manganese oxidation mechanisms.
-
-
-
-
Hyphal content determines the compression strength of Candida albicans biofilms
Candida albicans is the most frequently isolated human fungal pathogen among species causing biofilm-related clinical infections. Mechanical properties of Candida biofilms have hitherto been given no attention, despite the fact that mechanical properties are important for selection of treatment or dispersal of biofilm organisms due to a bodily fluid flow. The aim of this study was to identify the factors that determine the compression strength of Candida biofilms. Biofilms of C. albicans wild-type parental strain Caf2-1, mutant strain Chk24 lacking Chk1p [known to be involved in regulation of morphogenesis (yeast-to-hyphae transition)] and gene-reconstructed strain Chk23 were evaluated for their resistance to compression, along with biofilms of Candida tropicalis GB 9/9 and Candida parapsilosis GB 2/8, derived from used voice prosthetic biofilms. Additionally, cell morphologies within the biofilm, cell-surface hydrophobicities and extracellular polymeric substance composition were determined. Our results suggest that the hyphae-to-yeast ratio influences the compression strength of C. albicans biofilms. Biofilms with a hyphal content >50 % possessed significantly higher compressive strength and were more difficult to destroy by vortexing and sonication than biofilms with a lower hyphal content. However, when the amount of extracellular DNA (eDNA) in biofilms of C. albicans Caf2-1 and Chk24 increased, biofilm strength declined, suggesting that eDNA may influence biofilm integrity adversely.
-
- Genes And Genomes
-
-
-
From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later
Comparative genomics is the cornerstone of identification of gene functions. The immense number of living organisms precludes experimental identification of functions except in a handful of model organisms. The bacterial domain is split into large branches, among which the Firmicutes occupy a considerable space. Bacillus subtilis has been the model of Firmicutes for decades and its genome has been a reference for more than 10 years. Sequencing the genome involved more than 30 laboratories, with different expertises, in a attempt to make the most of the experimental information that could be associated with the sequence. This had the expected drawback that the sequencing expertise was quite varied among the groups involved, especially at a time when sequencing genomes was extremely hard work. The recent development of very efficient, fast and accurate sequencing techniques, in parallel with the development of high-level annotation platforms, motivated the present resequencing work. The updated sequence has been reannotated in agreement with the UniProt protein knowledge base, keeping in perspective the split between the paleome (genes necessary for sustaining and perpetuating life) and the cenome (genes required for occupation of a niche, suggesting here that B. subtilis is an epiphyte). This should permit investigators to make reliable inferences to prepare validation experiments in a variety of domains of bacterial growth and development as well as build up accurate phylogenies.
-
-
-
-
The cmaR gene of Corynebacterium ammoniagenes performs a novel regulatory role in the metabolism of sulfur-containing amino acids
More LessA novel regulatory gene, which performs an essential function in sulfur metabolism, has been identified in Corynebacterium ammoniagenes and was designated cmaR (cysteine and methionine regulator in C. ammoniagenes). The cmaR-disrupted strain (ΔcmaR) lost the ability to grow on minimal medium, and was identified as a methionine and cysteine double auxotroph. The mutant strain proved unable to convert cysteine to methionine (and vice versa), and lost the ability to assimilate and reduce sulfate to sulfide. In the ΔcmaR strain, the mRNAs of the methionine biosynthetic genes metYX, metB and metFE were significantly reduced, and the activities of the methionine biosynthetic enzymes cystathionine γ-synthase, O-acetylhomoserine sulfhydrylase, and cystathionine β-lyase were relatively low, thereby suggesting that the cmaR gene exerts a positive regulatory effect on methionine biosynthetic genes. In addition, with the exception of cysK, reduced transcription levels of the sulfur-assimilatory genes cysIXYZ and cysHDN were noted in the cmaR-disrupted strain, which suggests that sulfur assimilation is also under the positive control of the cmaR gene. Furthermore, the expression of the cmaR gene itself was strongly induced via the addition of cysteine or methionine alone, but not the introduction of both amino acids together to the growth medium. In addition, the expression of the cmaR gene was enhanced in an mcbR-disrupted strain, which suggests that cmaR is under the negative control of McbR, which has been identified as a global regulator of sulfur metabolism. DNA binding of the purified CmaR protein to the promoter region of its target genes could be demonstrated in vitro. No metabolite effector was required for the protein to bind DNA. These results demonstrated that the cmaR gene of C. ammoniagenes plays a role similar to but distinct from that of the functional homologue cysR of Corynebacterium glutamicum.
-
-
-
Transfer, stable maintenance and expression of the mycolactone polyketide megasynthase mls genes in a recombination-impaired Mycobacterium marinum
The human pathogen Mycobacterium ulcerans produces a polyketide metabolite called mycolactone with potent immunomodulatory activity. M. ulcerans strain Agy99 has a 174 kb plasmid called pMUM001 with three large genes (mlsA1, 51 kb; mlsA2, 7.2 kb; mlsB, 43 kb) that encode type I polyketide synthases (PKS) required for the biosynthesis of mycolactone, as demonstrated by transposon mutagenesis. However, there have been no reports of transfer of the mls locus to another mycobacterium to demonstrate that these genes are sufficient for mycolactone production because in addition to their large size, the mls genes contain a high level of internal sequence repetition, such that the entire 102 kb locus is composed of only 9.5 kb of unique DNA. The combination of their large size and lack of stability during laboratory passage makes them a challenging prospect for transfer to a more rapidly growing and genetically tractable host. Here we describe the construction of two bacterial artificial chromosome Escherichia coli/Mycobacterium shuttle vectors, one based on the pMUM001 origin of replication bearing mlsB, and the other based on the mycobacteriophage L5 integrase, bearing mlsA1 and mlsA2. The combination of these two constructs permitted the two-step transfer of the entire 174 kb pMUM001 plasmid to Mycobacterium marinum, a rapidly growing non-mycolactone-producing mycobacterium that is a close genetic relative of M. ulcerans. To improve the stability of the mls locus in M. marinum, recA was inactivated by insertion of a hygromycin-resistance gene using double-crossover allelic exchange. As expected, the ΔrecA mutant displayed increased susceptibility to UV killing and a decreased frequency of homologous recombination. Southern hybridization and RT-PCR confirmed the stable transfer and expression of the mls genes in both wild-type M. marinum and the recA mutant. However, neither mycolactone nor its predicted precursor metabolites were detected in either strain. These experiments show that it is possible to successfully manipulate and stably transfer the large mls genes, but that other bacterial host factors appear to be required to facilitate mycolactone production.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)