1887

Abstract

The tellurium oxyanion tellurite is toxic for most organisms and it seems to alter a number of intracellular targets. In this work the toxic effects of tellurite upon [4Fe–4S] cluster-containing dehydratases was studied. Reactive oxygen species (ROS)-sensitive fumarase A (FumA) and aconitase B (AcnB) as well as ROS-resistant fumarase C (FumC) and aconitase A (AcnA) were assayed in cell-free extracts from tellurite-exposed cells in both the presence and absence of oxygen. While over 90 % of FumA and AcnB activities were lost in the presence of oxygen, no enzyme inactivation was observed in anaerobiosis. This result was not dependent upon protein biosynthesis, as determined using translation-arrested cells. Enzyme activity of purified FumA and AcnB was inhibited when exposed to an superoxide-generating, tellurite-reducing system (ITRS). No inhibitory effect was observed when tellurite was omitted from the ITRS. and reconstitution experiments with tellurite-damaged FumA and AcnB suggested that tellurite effects involve [Fe–S] cluster disabling. In fact, after exposing FumA to ITRS, released ferrous ion from the enzyme was demonstrated by spectroscopic analysis using the specific Fe chelator 2,2′-bipyridyl. Subsequent spectroscopic paramagnetic resonance analysis of FumA exposed to ITRS showed the characteristic signal of an oxidatively inactivated [3Fe–4S] cluster. These results suggest that tellurite inactivates enzymes of this kind via a superoxide-dependent disabling of their [4Fe–4S] catalytic clusters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026260-0
2009-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1840.html?itemId=/content/journal/micro/10.1099/mic.0.026260-0&mimeType=html&fmt=ahah

References

  1. Alonso, G., Gomes, C., González, C. & Rodríguez-Lemoine, V. ( 2000; ). On the mechanism of resistance to channel-forming colicins (PacB) and tellurite, encoded by plasmid Mip233 (IncHI3). FEMS Microbiol Lett 192, 257–261.[CrossRef]
    [Google Scholar]
  2. Borsetti, F., Tremaroli, V., Michelacci, F., Borghese, R., Winterstein, C., Daldal, F. & Zannoni, D. ( 2005; ). Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156, 807–813.[CrossRef]
    [Google Scholar]
  3. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  4. Brown, N. M., Kennedy, M. C., Antholine, W. E., Eisenstein, R. S. & Walden, W. E. ( 2002; ). Detection of a [3Fe–4S] cluster intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1. Insights into the mechanism of Fe–S cluster cycling. J Biol Chem 277, 7246–7254.[CrossRef]
    [Google Scholar]
  5. Calderón, I. L., Arenas, F. A., Pérez, J. M., Fuentes, D. E., Araya, M. A., Saavedra, C. P., Tantaleán, J. C., Pichuantes, S. E., Youderian, P. A. & Vásquez, C. C. ( 2006; ). Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 1, e70 [CrossRef]
    [Google Scholar]
  6. Djaman, O., Outten, W. & Imlay, J. A. ( 2004; ). Repair of oxidized iron–sulfur clusters in Escherichia coli. J Biol Chem 279, 44590–44599.[CrossRef]
    [Google Scholar]
  7. Flint, D. H., Smyk-Randall, E., Tuminello, J. F., Draczynska-Lusiak, B. & Brown, O. R. ( 1993a; ). The inactivation of dihydroxy-acid dehydratase in Escherichia coli treated with hyperbaric oxygen occurs because of the destruction of its Fe–S cluster, but the enzyme remains in the cell in a form that can be reactivated. J Biol Chem 268, 25547–25552.
    [Google Scholar]
  8. Flint, D. H., Tuminello, J. F. & Emptage, M. ( 1993b; ). The inactivation of Fe–S cluster containing hydro-lyases by superoxide. J Biol Chem 268, 22369–22376.
    [Google Scholar]
  9. Fu, W., Jack, R., Morgan, T., Dean, D. & Johnson, M. ( 1994; ). nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe–2S] clusters. Biochemistry 33, 13455–13463.[CrossRef]
    [Google Scholar]
  10. Gardner, P. R. & Fridovich, I. ( 1991; ). Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266, 19328–19333.
    [Google Scholar]
  11. Imlay, J. A. ( 2003; ). Pathways of oxidative damage. Annu Rev Microbiol 57, 395–418.[CrossRef]
    [Google Scholar]
  12. Kuo, C. F., Mashino, T. & Fridovich, I. ( 1987; ). α,β-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. J Biol Chem 262, 4724–4727.
    [Google Scholar]
  13. Liochev, S. I. & Fridovich, I. ( 1993; ). Modulation of the fumarases of Escherichia coli in response to oxidative stress. Arch Biochem Biophys 301, 379–384.[CrossRef]
    [Google Scholar]
  14. Lithgow, J. K., Hayhurst, E. J., Cohen, G., Aharonowitz, Y. & Foster, S. J. ( 2004; ). Role of a cysteine synthase in Staphylococcus aureus. J Bacteriol 186, 1579–1590.[CrossRef]
    [Google Scholar]
  15. Loiseau, L., Ollagnier-de-Choudens, S., Nachin, L., Fontecave, M. & Barras, F. ( 2003; ). Biogenesis of Fe–S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278, 38352–38359.[CrossRef]
    [Google Scholar]
  16. Massey, V. ( 1994; ). Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269, 22459–22462.
    [Google Scholar]
  17. Messner, K. R. & Imlay, J. A. ( 1999; ). The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 274, 10119–10128.[CrossRef]
    [Google Scholar]
  18. Messner, K. R. & Imlay, J. A. ( 2002; ). Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem 277, 42563–42571.[CrossRef]
    [Google Scholar]
  19. O'Gara, J. P., Gomelsky, M. & Kaplan, S. ( 1997; ). Identification and molecular genetic analysis of multiple loci contributing to high-level tellurite resistance in Rhodobacter sphaeroides 2.4.1. Appl Environ Microbiol 63, 4713–4720.
    [Google Scholar]
  20. Outten, F. W., Wood, M. J., Muñoz, F. M. & Storz, G. ( 2003; ). The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe–S cluster assembly in Escherichia coli. J Biol Chem 278, 45713–45719.[CrossRef]
    [Google Scholar]
  21. Pérez, J. M., Calderón, I. L., Arenas, F. A., Fuentes, D. E., Pradenas, G. A., Fuentes, E. L., Sandoval, J. M., Castro, M. E., Elías, A. O. & Vásquez, C. C. ( 2007; ). Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One 2, e211 [CrossRef]
    [Google Scholar]
  22. Pérez, J. M., Arenas, F. A., Pradenas, G. A., Sandoval, J. M. & Vásquez, C. C. ( 2008; ). Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283, 7346–7353.[CrossRef]
    [Google Scholar]
  23. Ramírez, A., Castañeda, M., Xiqui, M. L., Sosa, A. & Baca, B. E. ( 2006; ). Identification, cloning and characterization of cysK, the gene encoding O-acetylserine (thiol)-lyase from Azospirillum brasilense, which is involved in tellurite resistance. FEMS Microbiol Lett 261, 272–279.[CrossRef]
    [Google Scholar]
  24. Refsgaard, H. H., Tsai, L. & Stadtman, E. R. ( 2000; ). Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc Natl Acad Sci U S A 97, 611–616.[CrossRef]
    [Google Scholar]
  25. Rojas, D. M. & Vásquez, C. C. ( 2005; ). Sensitivity to potassium tellurite of Escherichia coli cells deficient in CSD, CsdB and IscS cysteine desulfurases. Res Microbiol 156, 465–471.[CrossRef]
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Storz, G. & Imlay, J. A. ( 1999; ). Oxidative stress. Curr Opin Microbiol 2, 188–194.[CrossRef]
    [Google Scholar]
  28. Tantaleán, J. C., Araya, M. A., Pichuantes, S. E., Saavedra, C. P., Fuentes, D. E., Pérez, J. M., Calderón, I. L. & Vásquez, C. C. ( 2003; ). The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. J Bacteriol 185, 5831–5837.[CrossRef]
    [Google Scholar]
  29. Taylor, D. E. ( 1999; ). Bacterial tellurite resistance. Trends Microbiol 7, 111–115.[CrossRef]
    [Google Scholar]
  30. Tremaroli, V., Fedi, F. & Zannoni, D. ( 2006; ). Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol 187, 127–135.
    [Google Scholar]
  31. Turner, R. J., Weiner, J. & Taylor, D. E. ( 1999; ). Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology 145, 2549–2557.
    [Google Scholar]
  32. Turner, R. J., Aharonowitz, Y., Weiner, J. & Taylor, D. E. ( 2001; ). Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47, 33–40.[CrossRef]
    [Google Scholar]
  33. Varghese, S., Tang, Y. & Imlay, J. A. ( 2003; ). Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 185, 221–230.[CrossRef]
    [Google Scholar]
  34. Vásquez, C. C., Saavedra, C. P., Loyola, C. A., Araya, M. A. & Pichuantes, S. E. ( 2001; ). The product of the cysK gene of Bacillus stearothermophilus V mediates potassium tellurite resistance in Escherichia coli. Curr Microbiol 43, 418–423.[CrossRef]
    [Google Scholar]
  35. Zheng, L., White, R., Cash, V., Jack, R. & Dean, D. ( 1993; ). Cysteine desulfurase activity indicates a role for NifS in metallocluster biosynthesis. Proc Natl Acad Sci U S A 90, 2754–2758.[CrossRef]
    [Google Scholar]
  36. Zheng, L., White, R., Cash, V. & Dean, D. ( 1994; ). Mechanism for the sulfurization of l-cysteine catalyzed by the nifS gene product. Biochemistry 33, 4714–4720.[CrossRef]
    [Google Scholar]
  37. Zheng, M., Wang, X., Templeton, L., Smulski, D., LaRossa, R. & Storz, G. ( 2001; ). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183, 4562–4570.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026260-0
Loading
/content/journal/micro/10.1099/mic.0.026260-0
Loading

Data & Media loading...

Supplements

Specific FumA activity in chloramphenicol-arrested : tellurite-mediated decrease in fumarase activity is not due to inhibition of the translation machinery [ PDF] (13 kb) Reconstitution of tellurite-damaged aconitase activity in crude extracts of [ PDF] (15 kb) Assessment of FumA [4Fe-4S] cluster integrity by EPR [ PDF] (21 kb) Superoxide dismutase avoids the inhibition of FumA by an tellurite-reducing system (ITRS) [ PDF] (11 kb).

PDF

Specific FumA activity in chloramphenicol-arrested : tellurite-mediated decrease in fumarase activity is not due to inhibition of the translation machinery [ PDF] (13 kb) Reconstitution of tellurite-damaged aconitase activity in crude extracts of [ PDF] (15 kb) Assessment of FumA [4Fe-4S] cluster integrity by EPR [ PDF] (21 kb) Superoxide dismutase avoids the inhibition of FumA by an tellurite-reducing system (ITRS) [ PDF] (11 kb).

PDF

Specific FumA activity in chloramphenicol-arrested : tellurite-mediated decrease in fumarase activity is not due to inhibition of the translation machinery [ PDF] (13 kb) Reconstitution of tellurite-damaged aconitase activity in crude extracts of [ PDF] (15 kb) Assessment of FumA [4Fe-4S] cluster integrity by EPR [ PDF] (21 kb) Superoxide dismutase avoids the inhibition of FumA by an tellurite-reducing system (ITRS) [ PDF] (11 kb).

PDF

Specific FumA activity in chloramphenicol-arrested : tellurite-mediated decrease in fumarase activity is not due to inhibition of the translation machinery [ PDF] (13 kb) Reconstitution of tellurite-damaged aconitase activity in crude extracts of [ PDF] (15 kb) Assessment of FumA [4Fe-4S] cluster integrity by EPR [ PDF] (21 kb) Superoxide dismutase avoids the inhibition of FumA by an tellurite-reducing system (ITRS) [ PDF] (11 kb).

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error