1887

Abstract

The sensor kinase AbsA1 (SCO3225) phosphorylates the response regulator AbsA2 (SCO3226) and dephosphorylates AbsA2∼P. The phosphorylated response regulator represses antibiotic biosynthesis operons in . AbsA1 was predicted to have an atypical transmembrane topology, and the location of its signal-sensing domain is not readily obvious. To better understand this protein and to gain insight into its signal response mechanism, we determined its transmembrane topology using fusions of to , which is believed to be the first application of this approach to transmembrane topology in the actinomycetes. Our results are in agreement with the topological predictions and demonstrate that AbsA1 has five transmembrane domains, four near the N terminus and one near the C terminus. Unlike most sensor kinases, the largest extracellular portion of AbsA1 is at the C terminus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028431-0
2009-06-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1812.html?itemId=/content/journal/micro/10.1099/mic.0.028431-0&mimeType=html&fmt=ahah

References

  1. Adamidis T., Riggle P., Champness W.. 1990; Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol172:2962–2969
    [Google Scholar]
  2. Anderson T. B., Brian P., Champness W. C.. 2001; Genetic and transcriptional analysis of absA , an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor . Mol Microbiol39:553–566
    [Google Scholar]
  3. Bibb M. J.. 2005; Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol8:208–215
    [Google Scholar]
  4. Boyd D., Traxler B., Beckwith J.. 1993; Analysis of the topology of a membrane protein by using a minimum number of alkaline phosphatase fusions. J Bacteriol175:553–556
    [Google Scholar]
  5. Drew D., Sjostrand D., Nilsson J., Urbig T., Chin C. N., de Gier J. W., von Heijne G.. 2002; Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A99:2690–2695
    [Google Scholar]
  6. Feilmeier B. J., Iseminger G., Schroeder D., Webber H., Phillips G. J.. 2000; Green fluorescent protein functions as a reporter for protein localization in Escherichia coli . J Bacteriol182:4068–4076
    [Google Scholar]
  7. Gandlur S. M., Wei L., Levine J., Russell J., Kaur P.. 2004; Membrane topology of the DrrB protein of the doxorubicin transporter of Streptomyces peucetius . J Biol Chem279:27799–27806
    [Google Scholar]
  8. Geukens N., Lammertyn E., Van Mellaert L., Schacht S., Schaerlaekens K., Parro V., Bron S., Engelborghs Y., Mellado R. P., Anné J.. other authors 2001; Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol183:4752–4760
    [Google Scholar]
  9. Ikeno S., Aoki D., Hamada M., Hori M., Tsuchiya K. S.. 2006; DNA sequencing and transcriptional analysis of the kasugamycin biosynthetic gene cluster from Streptomyces kasugaensis M338–M1. J Antibiot (Tokyo59:18–28
    [Google Scholar]
  10. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces genetics Norwich, UK: The John Innes Foundation;
  11. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580
    [Google Scholar]
  12. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T.. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68
    [Google Scholar]
  13. Mascher T., Helmann J. D., Unden G.. 2006; Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev70:910–938
    [Google Scholar]
  14. McCormick J. R., Losick R.. 1996; Cell division gene ftsQ is required for efficient sporulation but not growth and viability in Streptomyces coelicolor A3(2. J Bacteriol178:5295–5301
    [Google Scholar]
  15. McCormick J. R., Su E. P., Driks A., Losick R.. 1994; Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ . Mol Microbiol14:243–254
    [Google Scholar]
  16. Murakami T., Holt T. G., Thompson C. J.. 1989; Thiostrepton-induced gene expression in Streptomyces lividans . J Bacteriol171:1459–1466
    [Google Scholar]
  17. Pelaez F.. 2006; The historical delivery of antibiotics from microbial natural products – can history repeat?. Biochem Pharmacol71:981–990
    [Google Scholar]
  18. Piazza F., Tortosa P., Dubnau D.. 1999; Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. J Bacteriol181:4540–4548
    [Google Scholar]
  19. Schultz J., Copley R. R., Doerks T., Ponting C. P., Bork P.. 2000; smart: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res28:231–234
    [Google Scholar]
  20. Sheeler N. L., MacMillan S. V., Nodwell J. R.. 2005; Biochemical activities of the absA two-component system of Streptomyces coelicolor . J Bacteriol187:687–696
    [Google Scholar]
  21. Sun J., Kelemen G. H., Fernandez-Abalos J. M., Bibb M. J.. 1999; Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2. Microbiology145:2221–2227
    [Google Scholar]
  22. Weber T., Welzel K., Pelzer S., Vente A., Wohlleben W.. 2003; Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol106:221–232
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028431-0
Loading
/content/journal/micro/10.1099/mic.0.028431-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error