1887

Abstract

The process of endospore formation in is complex, requiring the generation of two distinct cell types, a forespore and larger mother cell. The development of these cell types is controlled and regulated by cell type-specific gene expression, activated by a -factor cascade. Activation of these cell type-specific sigma factors is coupled with the completion of polar septation. Here, we describe a novel protein, YuaG, a eukaryotic reggie/flotillin homologue that is involved in the early stages of sporulation of the Gram-positive model organism . YuaG localizes in discrete foci in the membrane and is highly dynamic. Purification of detergent-resistant membranes revealed that YuaG is associated with negatively charged phospholipids, e.g. phosphatidylglycerol (PG) or cardiolipin (CL). However, localization of YuaG is not always dependent on PG/CL . A disruption strain shows a delay in the onset of sporulation along with reduced sporulation efficiency, where the spores develop to a certain stage and then appear to be trapped at this stage. Our results indicate that YuaG is involved in the early stage of spore development, probably playing a role in the signalling cascade at the onset of sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025312-0
2009-06-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1786.html?itemId=/content/journal/micro/10.1099/mic.0.025312-0&mimeType=html&fmt=ahah

References

  1. Alley, M. R., Maddock, J. R. & Shapiro, L. ( 1992; ). Polar localization of a bacterial chemoreceptor. Genes Dev 6, 825–836.[CrossRef]
    [Google Scholar]
  2. Bligh, E. G. & Dyer, W. J. ( 1959; ). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef]
    [Google Scholar]
  3. Cao, M., Bernat, B. A., Wang, Z., Armstrong, R. N. & Helmann, J. D. ( 2001; ). FosB, a cysteine-dependent fosfomycin resistance protein under the control of σ W, an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol 183, 2380–2383.[CrossRef]
    [Google Scholar]
  4. Carballido-Lopez, R. & Formstone, A. ( 2007; ). Shape determination in Bacillus subtilis. Curr Opin Microbiol 10, 611–616.[CrossRef]
    [Google Scholar]
  5. Daniel, R. A. & Errington, J. ( 2003; ). Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776.[CrossRef]
    [Google Scholar]
  6. de Diesbach, P., Medts, T., Carpentier, S., D'Auria, L., Van Der Smissen, P., Platek, A., Mettlen, M., Caplanusi, A., van den Hove, M. F. & other authors ( 2008; ). Differential subcellular membrane recruitment of Src may specify its downstream signalling. Exp Cell Res 314, 1465–1479.[CrossRef]
    [Google Scholar]
  7. Dermine, J. F., Duclos, S., Garin, J., St-Louis, F., Rea, S., Parton, R. G. & Desjardins, M. ( 2001; ). Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 276, 18507–18512.[CrossRef]
    [Google Scholar]
  8. Dowhan, W. ( 1997; ). Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66, 199–232.[CrossRef]
    [Google Scholar]
  9. Errington, J. ( 2003; ). Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1, 117–126.[CrossRef]
    [Google Scholar]
  10. Feucht, A. & Lewis, P. J. ( 2001; ). Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis. Gene 264, 289–297.[CrossRef]
    [Google Scholar]
  11. Gallet, P. F., Maftah, A., Petit, J. M., Denis-Gay, M. & Julien, R. ( 1995; ). Direct cardiolipin assay in yeast using the red fluorescence emission of 10-N-nonyl acridine orange. Eur J Biochem 228, 113–119.[CrossRef]
    [Google Scholar]
  12. Grant, W. D. ( 1974; ). Sporulation in Bacillus subtilis 168. Control of synthesis of alkaline phosphatase. J Gen Microbiol 82, 363–369.[CrossRef]
    [Google Scholar]
  13. Graumann, P. L. ( 2007; ). Cytoskeletal elements in bacteria. Annu Rev Microbiol 61, 589–618.[CrossRef]
    [Google Scholar]
  14. Huang, X., Gaballa, A., Cao, M. & Helmann, J. D. ( 1999; ). Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, σ W. Mol Microbiol 31, 361–371.[CrossRef]
    [Google Scholar]
  15. Illing, N. & Errington, J. ( 1991; ). Genetic regulation of morphogenesis in Bacillus subtilis: roles of σ E and σ F in prespore engulfment. J Bacteriol 173, 3159–3169.
    [Google Scholar]
  16. Jacobson, K., Mouritsen, O. G. & Anderson, R. G. ( 2007; ). Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9, 7–14.[CrossRef]
    [Google Scholar]
  17. Johnson, A. S., van Horck, S. & Lewis, P. J. ( 2004; ). Dynamic localization of membrane proteins in Bacillus subtilis. Microbiology 150, 2815–2824.[CrossRef]
    [Google Scholar]
  18. Jones, L. J., Carballido-Lopez, R. & Errington, J. ( 2001; ). Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922.[CrossRef]
    [Google Scholar]
  19. Karow, M. L. & Piggot, P. J. ( 1995; ). Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163, 69–74.[CrossRef]
    [Google Scholar]
  20. Katanaev, V. L., Solis, G. P., Hausmann, G., Buestorf, S., Katanayeva, N., Schrock, Y., Stuermer, C. A. & Basler, K. ( 2008; ). Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. EMBO J 27, 509–521.[CrossRef]
    [Google Scholar]
  21. Kawai, F., Shoda, M., Harashima, R., Sadaie, Y., Hara, H. & Matsumoto, K. ( 2004; ). Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 186, 1475–1483.[CrossRef]
    [Google Scholar]
  22. Kawai, F., Hara, H., Takamatsu, H., Watabe, K. & Matsumoto, K. ( 2006; ). Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet Syst 81, 69–76.[CrossRef]
    [Google Scholar]
  23. Keppler, A., Kindermann, M., Gendreizig, S., Pick, H., Vogel, H. & Johnsson, K. ( 2004; ). Labeling of fusion proteins of O 6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32, 437–444.[CrossRef]
    [Google Scholar]
  24. Koppelman, C. M., Den Blaauwen, T., Duursma, M. C., Heeren, R. M. & Nanninga, N. ( 2001; ). Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol 183, 6144–6147.[CrossRef]
    [Google Scholar]
  25. Lang, D. M., Lommel, S., Jung, M., Ankerhold, R., Petrausch, B., Laessing, U., Wiechers, M. F., Plattner, H. & Stuermer, C. A. ( 1998; ). Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol 37, 502–523.[CrossRef]
    [Google Scholar]
  26. Langhorst, M. F., Reuter, A. & Stuermer, C. A. ( 2005; ). Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62, 2228–2240.[CrossRef]
    [Google Scholar]
  27. Langhorst, M. F., Jaeger, F. A., Mueller, S., Sven Hartmann, L., Luxenhofer, G. & Stuermer, C. A. ( 2008; ). Reggies/flotillins regulate cytoskeletal remodeling during neuronal differentiation via CAP/ponsin and Rho GTPases. Eur J Cell Biol 87, 921–931.[CrossRef]
    [Google Scholar]
  28. Lewis, P. J. & Marston, A. L. ( 1999; ). GFP vectors for controlled expression and dual labeling of protein fusions in Bacillus subtilis. Gene 227, 101–110.[CrossRef]
    [Google Scholar]
  29. Lewis, P. J., Partridge, S. R. & Errington, J. ( 1994; ). Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis. Proc Natl Acad Sci U S A 91, 3849–3853.[CrossRef]
    [Google Scholar]
  30. Londono-Vallejo, J. A., Frehel, C. & Stragier, P. ( 1997; ). SpoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol Microbiol 24, 29–39.[CrossRef]
    [Google Scholar]
  31. Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. ( 1998; ). Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12, 3419–3430.[CrossRef]
    [Google Scholar]
  32. Matsumoto, K. ( 2001; ). Dispensable nature of phosphatidylglycerol in Escherichia coli: dual roles of anionic phospholipids. Mol Microbiol 39, 1427–1433.[CrossRef]
    [Google Scholar]
  33. Matsumoto, K., Kusaka, J., Nishibori, A. & Hara, H. ( 2006; ). Lipid domains in bacterial membranes. Mol Microbiol 61, 1110–1117.[CrossRef]
    [Google Scholar]
  34. Mileykovskaya, E. & Dowhan, W. ( 2000; ). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182, 1172–1175.[CrossRef]
    [Google Scholar]
  35. Mileykovskaya, E., Dowhan, W., Birke, R. L., Zheng, D., Lutterodt, L. & Haines, T. H. ( 2001; ). Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett 507, 187–190.[CrossRef]
    [Google Scholar]
  36. Molle, V., Fujita, M., Jensen, S. T., Eichenberger, P., Gonzalez-Pastor, J. E., Liu, J. S. & Losick, R. ( 2003; ). The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50, 1683–1701.[CrossRef]
    [Google Scholar]
  37. Morrow, I. C., Rea, S., Martin, S., Prior, I. A., Prohaska, R., Hancock, J. F., James, D. E. & Parton, R. G. ( 2002; ). Flotillin-1/reggie-2 traffics to surface raft domains via a novel Golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem 277, 48834–48841.[CrossRef]
    [Google Scholar]
  38. Neumann-Giesen, C., Fernow, I., Amaddii, M. & Tikkanen, R. ( 2007; ). Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J Cell Sci 120, 395–406.[CrossRef]
    [Google Scholar]
  39. Nishibori, A., Kusaka, J., Hara, H., Umeda, M. & Matsumoto, K. ( 2005; ). Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol 187, 2163–2174.[CrossRef]
    [Google Scholar]
  40. Özcan, N., Ejsing, C. S., Shevchenko, A., Lipski, A., Morbach, S. & Kramer, R. ( 2007; ). Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum. J Bacteriol 189, 7485–7496.[CrossRef]
    [Google Scholar]
  41. Partridge, S. R. & Errington, J. ( 1993; ). The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 8, 945–955.[CrossRef]
    [Google Scholar]
  42. Partridge, S. R., Foulger, D. & Errington, J. ( 1991; ). The role of σ F in prespore-specific transcription in Bacillus subtilis. Mol Microbiol 5, 757–767.[CrossRef]
    [Google Scholar]
  43. Petit, J. M., Maftah, A., Ratinaud, M. H. & Julien, R. ( 1992; ). 10N-Nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem 209, 267–273.[CrossRef]
    [Google Scholar]
  44. Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. ( 2000; ). Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148, 997–1008.[CrossRef]
    [Google Scholar]
  45. Romantsov, T., Stalker, L., Culham, D. E. & Wood, J. M. ( 2008; ). Cardiolipin controls the osmotic stress response and the subcellular location of transporter prop in Escherichia coli. J Biol Chem 283, 12314–12323.[CrossRef]
    [Google Scholar]
  46. Salzer, U. & Prohaska, R. ( 2001; ). Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97, 1141–1143.[CrossRef]
    [Google Scholar]
  47. Schneider, A., Rajendran, L., Honsho, M., Gralle, M., Donnert, G., Wouters, F., Hell, S. W. & Simons, M. ( 2008; ). Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 28, 2874–2882.[CrossRef]
    [Google Scholar]
  48. Sharp, M. D. & Pogliano, K. ( 2002; ). Role of cell-specific SpoIIIE assembly in polarity of DNA transfer. Science 295, 137–139.[CrossRef]
    [Google Scholar]
  49. Simons, K. & Ikonen, E. ( 1997; ). Functional rafts in cell membranes. Nature 387, 569–572.[CrossRef]
    [Google Scholar]
  50. Simons, K. & Toomre, D. ( 2000; ). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31–39.
    [Google Scholar]
  51. Singer, S. J. & Nicolson, G. L. ( 1972; ). The fluid mosaic model of the structure of cell membranes. Science 175, 720–731.[CrossRef]
    [Google Scholar]
  52. Stallkamp, I., Dowhan, W., Altendorf, K. & Jung, K. ( 1999; ). Negatively charged phospholipids influence the activity of the sensor kinase KdpD of Escherichia coli. Arch Microbiol 172, 295–302.[CrossRef]
    [Google Scholar]
  53. Sterlini, J. M. & Mandelstam, J. ( 1969; ). Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113, 29–37.
    [Google Scholar]
  54. Stevens, C. M., Daniel, R., Illing, N. & Errington, J. ( 1992; ). Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J Bacteriol 174, 586–594.
    [Google Scholar]
  55. Stuermer, C. A., Lang, D. M., Kirsch, F., Wiechers, M., Deininger, S. O. & Plattner, H. ( 2001; ). Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell 12, 3031–3045.[CrossRef]
    [Google Scholar]
  56. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104.[CrossRef]
    [Google Scholar]
  57. Walker, C. A., Hinderhofer, M., Witte, D. J., Boos, W. & Moller, H. M. ( 2008; ). Solution structure of the soluble domain of the NfeD protein YuaF from Bacillus subtilis. J Biomol NMR 42, 69–76.[CrossRef]
    [Google Scholar]
  58. Wehrl, W., Niederweis, M. & Schumann, W. ( 2000; ). The FtsH protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J Bacteriol 182, 3870–3873.[CrossRef]
    [Google Scholar]
  59. Wiegert, T., Homuth, G., Versteeg, S. & Schumann, W. ( 2001; ). Alkaline shock induces the Bacillus subtilis σ W regulon. Mol Microbiol 41, 59–71.[CrossRef]
    [Google Scholar]
  60. Zhang, H. M., Li, Z., Tsudome, M., Ito, S., Takami, H. & Horikoshi, K. ( 2005; ). An alkali-inducible flotillin-like protein from Bacillus halodurans C-125. Protein J 24, 125–131.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025312-0
Loading
/content/journal/micro/10.1099/mic.0.025312-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error