1887

Abstract

The process of endospore formation in is complex, requiring the generation of two distinct cell types, a forespore and larger mother cell. The development of these cell types is controlled and regulated by cell type-specific gene expression, activated by a -factor cascade. Activation of these cell type-specific sigma factors is coupled with the completion of polar septation. Here, we describe a novel protein, YuaG, a eukaryotic reggie/flotillin homologue that is involved in the early stages of sporulation of the Gram-positive model organism . YuaG localizes in discrete foci in the membrane and is highly dynamic. Purification of detergent-resistant membranes revealed that YuaG is associated with negatively charged phospholipids, e.g. phosphatidylglycerol (PG) or cardiolipin (CL). However, localization of YuaG is not always dependent on PG/CL . A disruption strain shows a delay in the onset of sporulation along with reduced sporulation efficiency, where the spores develop to a certain stage and then appear to be trapped at this stage. Our results indicate that YuaG is involved in the early stage of spore development, probably playing a role in the signalling cascade at the onset of sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025312-0
2009-06-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1786.html?itemId=/content/journal/micro/10.1099/mic.0.025312-0&mimeType=html&fmt=ahah

References

  1. Alley M. R., Maddock J. R., Shapiro L.. 1992; Polar localization of a bacterial chemoreceptor. Genes Dev6:825–836
    [Google Scholar]
  2. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917
    [Google Scholar]
  3. Cao M., Bernat B. A., Wang Z., Armstrong R. N., Helmann J. D.. 2001; FosB, a cysteine-dependent fosfomycin resistance protein under the control of σ W, an extracytoplasmic-function sigma factor in Bacillus subtilis . J Bacteriol183:2380–2383
    [Google Scholar]
  4. Carballido-Lopez R., Formstone A.. 2007; Shape determination in Bacillus subtilis . Curr Opin Microbiol10:611–616
    [Google Scholar]
  5. Daniel R. A., Errington J.. 2003; Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell113:767–776
    [Google Scholar]
  6. de Diesbach P., Medts T., Carpentier S., D'Auria L., Van Der Smissen P., Platek A., Mettlen M., Caplanusi A., van den Hove M. F.. other authors 2008; Differential subcellular membrane recruitment of Src may specify its downstream signalling. Exp Cell Res314:1465–1479
    [Google Scholar]
  7. Dermine J. F., Duclos S., Garin J., St-Louis F., Rea S., Parton R. G., Desjardins M.. 2001; Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem276:18507–18512
    [Google Scholar]
  8. Dowhan W.. 1997; Molecular basis for membrane phospholipid diversity: why are there so many lipids?. Annu Rev Biochem66:199–232
    [Google Scholar]
  9. Errington J.. 2003; Regulation of endospore formation in Bacillus subtilis . Nat Rev Microbiol1:117–126
    [Google Scholar]
  10. Feucht A., Lewis P. J.. 2001; Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis . Gene264:289–297
    [Google Scholar]
  11. Gallet P. F., Maftah A., Petit J. M., Denis-Gay M., Julien R.. 1995; Direct cardiolipin assay in yeast using the red fluorescence emission of 10- N -nonyl acridine orange. Eur J Biochem228:113–119
    [Google Scholar]
  12. Grant W. D.. 1974; Sporulation in Bacillus subtilis 168. Control of synthesis of alkaline phosphatase. J Gen Microbiol82:363–369
    [Google Scholar]
  13. Graumann P. L.. 2007; Cytoskeletal elements in bacteria. Annu Rev Microbiol61:589–618
    [Google Scholar]
  14. Huang X., Gaballa A., Cao M., Helmann J. D.. 1999; Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, σ W. Mol Microbiol31:361–371
    [Google Scholar]
  15. Illing N., Errington J.. 1991; Genetic regulation of morphogenesis in Bacillus subtilis : roles of σ E and σ F in prespore engulfment. J Bacteriol173:3159–3169
    [Google Scholar]
  16. Jacobson K., Mouritsen O. G., Anderson R. G.. 2007; Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol9:7–14
    [Google Scholar]
  17. Johnson A. S., van Horck S., Lewis P. J.. 2004; Dynamic localization of membrane proteins in Bacillus subtilis . Microbiology150:2815–2824
    [Google Scholar]
  18. Jones L. J., Carballido-Lopez R., Errington J.. 2001; Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis . Cell104:913–922
    [Google Scholar]
  19. Karow M. L., Piggot P. J.. 1995; Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene163:69–74
    [Google Scholar]
  20. Katanaev V. L., Solis G. P., Hausmann G., Buestorf S., Katanayeva N., Schrock Y., Stuermer C. A., Basler K.. 2008; Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila . EMBO J27:509–521
    [Google Scholar]
  21. Kawai F., Shoda M., Harashima R., Sadaie Y., Hara H., Matsumoto K.. 2004; Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol186:1475–1483
    [Google Scholar]
  22. Kawai F., Hara H., Takamatsu H., Watabe K., Matsumoto K.. 2006; Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet Syst81:69–76
    [Google Scholar]
  23. Keppler A., Kindermann M., Gendreizig S., Pick H., Vogel H., Johnsson K.. 2004; Labeling of fusion proteins of O 6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods32:437–444
    [Google Scholar]
  24. Koppelman C. M., Den Blaauwen T., Duursma M. C., Heeren R. M., Nanninga N.. 2001; Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol183:6144–6147
    [Google Scholar]
  25. Lang D. M., Lommel S., Jung M., Ankerhold R., Petrausch B., Laessing U., Wiechers M. F., Plattner H., Stuermer C. A.. 1998; Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol37:502–523
    [Google Scholar]
  26. Langhorst M. F., Reuter A., Stuermer C. A.. 2005; Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci62:2228–2240
    [Google Scholar]
  27. Langhorst M. F., Jaeger F. A., Mueller S., Sven Hartmann L., Luxenhofer G., Stuermer C. A.. 2008; Reggies/flotillins regulate cytoskeletal remodeling during neuronal differentiation via CAP/ponsin and Rho GTPases. Eur J Cell Biol87:921–931
    [Google Scholar]
  28. Lewis P. J., Marston A. L.. 1999; GFP vectors for controlled expression and dual labeling of protein fusions in Bacillus subtilis . Gene227:101–110
    [Google Scholar]
  29. Lewis P. J., Partridge S. R., Errington J.. 1994; Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis . Proc Natl Acad Sci U S A91:3849–3853
    [Google Scholar]
  30. Londono-Vallejo J. A., Frehel C., Stragier P.. 1997; SpoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis . Mol Microbiol24:29–39
    [Google Scholar]
  31. Marston A. L., Thomaides H. B., Edwards D. H., Sharpe M. E., Errington J.. 1998; Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev12:3419–3430
    [Google Scholar]
  32. Matsumoto K.. 2001; Dispensable nature of phosphatidylglycerol in Escherichia coli : dual roles of anionic phospholipids. Mol Microbiol39:1427–1433
    [Google Scholar]
  33. Matsumoto K., Kusaka J., Nishibori A., Hara H.. 2006; Lipid domains in bacterial membranes. Mol Microbiol61:1110–1117
    [Google Scholar]
  34. Mileykovskaya E., Dowhan W.. 2000; Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10- N -nonyl acridine orange. J Bacteriol182:1172–1175
    [Google Scholar]
  35. Mileykovskaya E., Dowhan W., Birke R. L., Zheng D., Lutterodt L., Haines T. H.. 2001; Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett507:187–190
    [Google Scholar]
  36. Molle V., Fujita M., Jensen S. T., Eichenberger P., Gonzalez-Pastor J. E., Liu J. S., Losick R.. 2003; The Spo0A regulon of Bacillus subtilis . Mol Microbiol50:1683–1701
    [Google Scholar]
  37. Morrow I. C., Rea S., Martin S., Prior I. A., Prohaska R., Hancock J. F., James D. E., Parton R. G.. 2002; Flotillin-1/reggie-2 traffics to surface raft domains via a novel Golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem277:48834–48841
    [Google Scholar]
  38. Neumann-Giesen C., Fernow I., Amaddii M., Tikkanen R.. 2007; Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J Cell Sci120:395–406
    [Google Scholar]
  39. Nishibori A., Kusaka J., Hara H., Umeda M., Matsumoto K.. 2005; Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol187:2163–2174
    [Google Scholar]
  40. Özcan N., Ejsing C. S., Shevchenko A., Lipski A., Morbach S., Kramer R.. 2007; Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum . J Bacteriol189:7485–7496
    [Google Scholar]
  41. Partridge S. R., Errington J.. 1993; The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis . Mol Microbiol8:945–955
    [Google Scholar]
  42. Partridge S. R., Foulger D., Errington J.. 1991; The role of σ F in prespore-specific transcription in Bacillus subtilis . Mol Microbiol5:757–767
    [Google Scholar]
  43. Petit J. M., Maftah A., Ratinaud M. H., Julien R.. 1992; 10 N -Nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem209:267–273
    [Google Scholar]
  44. Pralle A., Keller P., Florin E. L., Simons K., Horber J. K.. 2000; Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol148:997–1008
    [Google Scholar]
  45. Romantsov T., Stalker L., Culham D. E., Wood J. M.. 2008; Cardiolipin controls the osmotic stress response and the subcellular location of transporter prop in Escherichia coli . J Biol Chem283:12314–12323
    [Google Scholar]
  46. Salzer U., Prohaska R.. 2001; Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood97:1141–1143
    [Google Scholar]
  47. Schneider A., Rajendran L., Honsho M., Gralle M., Donnert G., Wouters F., Hell S. W., Simons M.. 2008; Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci28:2874–2882
    [Google Scholar]
  48. Sharp M. D., Pogliano K.. 2002; Role of cell-specific SpoIIIE assembly in polarity of DNA transfer. Science295:137–139
    [Google Scholar]
  49. Simons K., Ikonen E.. 1997; Functional rafts in cell membranes. Nature387:569–572
    [Google Scholar]
  50. Simons K., Toomre D.. 2000; Lipid rafts and signal transduction. Nat Rev Mol Cell Biol1:31–39
    [Google Scholar]
  51. Singer S. J., Nicolson G. L.. 1972; The fluid mosaic model of the structure of cell membranes. Science175:720–731
    [Google Scholar]
  52. Stallkamp I., Dowhan W., Altendorf K., Jung K.. 1999; Negatively charged phospholipids influence the activity of the sensor kinase KdpD of Escherichia coli . Arch Microbiol172:295–302
    [Google Scholar]
  53. Sterlini J. M., Mandelstam J.. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J113:29–37
    [Google Scholar]
  54. Stevens C. M., Daniel R., Illing N., Errington J.. 1992; Characterization of a sporulation gene, spoIVA , involved in spore coat morphogenesis in Bacillus subtilis . J Bacteriol174:586–594
    [Google Scholar]
  55. Stuermer C. A., Lang D. M., Kirsch F., Wiechers M., Deininger S. O., Plattner H.. 2001; Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell12:3031–3045
    [Google Scholar]
  56. Vagner V., Dervyn E., Ehrlich S. D.. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiology144:3097–3104
    [Google Scholar]
  57. Walker C. A., Hinderhofer M., Witte D. J., Boos W., Moller H. M.. 2008; Solution structure of the soluble domain of the NfeD protein YuaF from Bacillus subtilis . J Biomol NMR42:69–76
    [Google Scholar]
  58. Wehrl W., Niederweis M., Schumann W.. 2000; The FtsH protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J Bacteriol182:3870–3873
    [Google Scholar]
  59. Wiegert T., Homuth G., Versteeg S., Schumann W.. 2001; Alkaline shock induces the Bacillus subtilis σ W regulon. Mol Microbiol41:59–71
    [Google Scholar]
  60. Zhang H. M., Li Z., Tsudome M., Ito S., Takami H., Horikoshi K.. 2005; An alkali-inducible flotillin-like protein from Bacillus halodurans C-125. Protein J24:125–131
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025312-0
Loading
/content/journal/micro/10.1099/mic.0.025312-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error