1887

Abstract

A novel regulatory gene, which performs an essential function in sulfur metabolism, has been identified in and was designated (ysteine and ethionine regulator in ). The -disrupted strain (Δ) lost the ability to grow on minimal medium, and was identified as a methionine and cysteine double auxotroph. The mutant strain proved unable to convert cysteine to methionine (and vice versa), and lost the ability to assimilate and reduce sulfate to sulfide. In the Δ strain, the mRNAs of the methionine biosynthetic genes , and were significantly reduced, and the activities of the methionine biosynthetic enzymes cystathionine -synthase, -acetylhomoserine sulfhydrylase, and cystathionine -lyase were relatively low, thereby suggesting that the gene exerts a positive regulatory effect on methionine biosynthetic genes. In addition, with the exception of , reduced transcription levels of the sulfur-assimilatory genes and were noted in the -disrupted strain, which suggests that sulfur assimilation is also under the positive control of the gene. Furthermore, the expression of the gene itself was strongly induced via the addition of cysteine or methionine alone, but not the introduction of both amino acids together to the growth medium. In addition, the expression of the gene was enhanced in an -disrupted strain, which suggests that is under the negative control of McbR, which has been identified as a global regulator of sulfur metabolism. DNA binding of the purified CmaR protein to the promoter region of its target genes could be demonstrated . No metabolite effector was required for the protein to bind DNA. These results demonstrated that the gene of plays a role similar to but distinct from that of the functional homologue of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024976-0
2009-06-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1878.html?itemId=/content/journal/micro/10.1099/mic.0.024976-0&mimeType=html&fmt=ahah

References

  1. Adams, A. & Kaiser, C. ( 1998; ). Methods in Yeast Genetics: a Cold Spring Harbor Laboratory course manual, 1997 edn. Plainview, NY: Cold Spring Harbor Laboratory.
  2. Burguière, P., Fert, J., Guillouard, I., Auger, S., Danchin, A. & Martin-Verstraete, I. ( 2005; ). Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism. J Bacteriol 187, 6019–6030.[CrossRef]
    [Google Scholar]
  3. Choi, W. W., Park, S. D., Lee, S. M., Kim, H. B., Kim, Y. & Lee, H. S. ( 2009; ). The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum. FEMS Microbiol Lett 290, 32–38.[CrossRef]
    [Google Scholar]
  4. Even, S., Burguière, P., Auger, S., Soutourina, O., Danchin, A. & Martin-Verstraete, I. ( 2006; ). Global control of cysteine metabolism by CymR in Bacillus subtilis. J Bacteriol 188, 2184–2197.[CrossRef]
    [Google Scholar]
  5. Fernandez, M., Kleerebezem, M., Kuipers, O. P., Siezen, R. J. & van Kranenburg, R. ( 2002; ). Regulation of the metC-cysK operon, involved in sulfur metabolism in Lactococcus lactis. J Bacteriol 184, 82–90.[CrossRef]
    [Google Scholar]
  6. Follettie, M. T., Peoples, O. P., Agoropoulou, C. & Sinskey, A. J. ( 1993; ). Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J Bacteriol 175, 4096–4103.
    [Google Scholar]
  7. Glanemann, C., Loos, A., Gorret, N., Willis, L. B., O'Brien, X. M., Lessard, P. A. & Sinskey, A. J. ( 2003; ). Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61, 61–68.[CrossRef]
    [Google Scholar]
  8. Grant, S. G., Jessee, J., Bloom, F. R. & Hanahan, D. ( 1990; ). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation–restriction mutants. Proc Natl Acad Sci U S A 87, 4645–4649.[CrossRef]
    [Google Scholar]
  9. Guillouard, I., Auger, S., Hullo, M. F., Chetouani, F., Danchin, A. & Martin-Verstraete, I. ( 2002; ). Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. J Bacteriol 184, 4681–4689.[CrossRef]
    [Google Scholar]
  10. Haitani, Y., Awano, N., Yamazaki, M., Wada, M., Nakamori, S. & Takagi, H. ( 2006; ). Functional analysis of l-serine O-acetyltransferase from Corynebacterium glutamicum. FEMS Microbiol Lett 255, 156–163.[CrossRef]
    [Google Scholar]
  11. Hullo, M. F., Auger, S., Soutourina, O., Barzu, O., Yvon, M., Danchin, A. & Martin-Verstraete, I. ( 2007; ). Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J Bacteriol 189, 187–197.[CrossRef]
    [Google Scholar]
  12. Hwang, B. J., Kim, Y., Kim, H. B., Hwang, H. J., Kim, J. H. & Lee, H. S. ( 1999; ). Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine gamma-synthase. Mol Cells 9, 300–308.
    [Google Scholar]
  13. Hwang, B. J., Yeom, H. J., Kim, Y. & Lee, H. S. ( 2002; ). Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 184, 1277–1286.[CrossRef]
    [Google Scholar]
  14. Iwanicka-Nowicka, R. & Hryniewicz, M. M. ( 1995; ). A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166, 11–17.[CrossRef]
    [Google Scholar]
  15. Iwanicka-Nowicka, R., Zielak, A., Cook, A. M., Thomas, M. S. & Hryniewicz, M. M. ( 2007; ). Regulation of sulfur assimilation pathways in Burkholderia cenocepacia: identification of transcription factors CysB and SsuR and their role in control of target genes. J Bacteriol 189, 1675–1688.[CrossRef]
    [Google Scholar]
  16. Kim, J. W., Kim, H. J., Kim, Y., Lee, M. S. & Lee, H. S. ( 2001; ). Properties of the Corynebacterium glutamicum metC gene encoding cystathionine β-lyase. Mol Cells 11, 220–225.
    [Google Scholar]
  17. Kim, H. J., Kim, T. H., Kim, Y. & Lee, H. S. ( 2004; ). Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186, 3453–3460.[CrossRef]
    [Google Scholar]
  18. Kim, T. H., Kim, H. J., Park, J. S., Kim, Y., Kim, P. & Lee, H. S. ( 2005; ). Functional analysis of sigH expression in Corynebacterium glutamicum. Biochem Biophys Res Commun 331, 1542–1547.[CrossRef]
    [Google Scholar]
  19. Koch, D. J., Rückert, C., Albersmeier, A., Hüser, A. T., Tauch, A., Pühler, A. & Kalinowski, J. ( 2005a; ). The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol 58, 480–494.[CrossRef]
    [Google Scholar]
  20. Koch, D. J., Rückert, C., Rey, D. A., Mix, A., Pühler, A. & Kalinowski, J. ( 2005b; ). Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. Appl Environ Microbiol 71, 6104–6114.[CrossRef]
    [Google Scholar]
  21. Kouzuma, A., Endoh, T., Omori, T., Nojiri, H., Yamane, H. & Habe, H. ( 2008; ). Transcription factors CysB and SfnR constitute the hierarchical regulatory system for the sulfate starvation response in Pseudomonas putida. J Bacteriol 190, 4521–4531.[CrossRef]
    [Google Scholar]
  22. Kredich, N. M. ( 1996; ). Biosynthesis of cysteine. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 514–527. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  23. Lee, H. S. ( 2005; ). Sulfur metabolism and its regulation. In Handbook of Corynebacterium glutamicum, pp. 351–376. Edited by L. Eggeling & M. Bott. Boca Raton, FL: Taylor & Francis.
  24. Lee, H. S. & Hwang, B. J. ( 2003; ). Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62, 459–467.[CrossRef]
    [Google Scholar]
  25. Liebl, W. ( 2006; ). Corynebacterium – Nonmedical. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, pp. 796–818. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  26. Link, A. J., Phillips, D. & Church, G. M. ( 1997; ). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228–6237.
    [Google Scholar]
  27. MacNeil, D. J., Occi, J. L., Gewain, K. M., MacNeil, T., Gibbons, P. H., Ruby, C. L. & Danis, S. J. ( 1992; ). Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115, 119–125.[CrossRef]
    [Google Scholar]
  28. Moll, I., Grill, S., Gualerzi, C. O. & Blasi, U. ( 2002; ). Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43, 239–246.[CrossRef]
    [Google Scholar]
  29. Ostrowski, J. & Kredich, N. M. ( 1989; ). Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-l-serine. J Bacteriol 171, 130–140.
    [Google Scholar]
  30. Ostrowski, J. & Kredich, N. M. ( 1990; ). In vitro interactions of CysB protein with the cysJIH promoter of Salmonella typhimurium: inhibitory effects of sulfide. J Bacteriol 172, 779–785.
    [Google Scholar]
  31. Park, S. D., Lee, J. Y., Kim, Y., Kim, J. H. & Lee, H. S. ( 1998; ). Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol Cells 8, 286–294.
    [Google Scholar]
  32. Park, S. D., Lee, S. N., Park, I. H., Choi, J. S., Jeong, W. K., Kim, Y. H. & Lee, H. S. ( 2004; ). Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J Microbiol Biotechnol 14, 789–795.
    [Google Scholar]
  33. Park, S. D., Lee, J. Y., Sim, S. Y., Kim, Y. & Lee, H. S. ( 2007; ). Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 9, 327–336.[CrossRef]
    [Google Scholar]
  34. Patek, M., Nesvera, J., Guyonvarch, A., Reyes, O. & Leblon, G. ( 2003; ). Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311–323.[CrossRef]
    [Google Scholar]
  35. Rey, D. A., Pühler, A. & Kalinowski, J. ( 2003; ). The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103, 51–65.[CrossRef]
    [Google Scholar]
  36. Rey, D. A., Nentwich, S. S., Koch, D. J., Rückert, C., Pühler, A., Tauch, A. & Kalinowski, J. ( 2005; ). The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56, 871–887.[CrossRef]
    [Google Scholar]
  37. Rossol, I. & Pühler, A. ( 1992; ). The Corynebacterium glutamicum aecD gene encodes a C–S lyase with α,β-elimination activity that degrades aminoethylcysteine. J Bacteriol 174, 2968–2977.
    [Google Scholar]
  38. Rückert, C. & Kalinowski, J. ( 2008; ). Sulfur metabolism in Corynebacterium glutamicum. In Corynebacteria: Genomics and Molecular Biology, pp. 117–240. Edited by A. Burkowski. Norwich, UK: Caister Academic Press.
  39. Rückert, C., Pühler, A. & Kalinowski, J. ( 2003; ). Genome-wide analysis of the l-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104, 213–228.[CrossRef]
    [Google Scholar]
  40. Rückert, C., Koch, D. J., Rey, D. A., Albersmeier, A., Mormann, S., Pühler, A. & Kalinowski, J. ( 2005; ). Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6, 121 [CrossRef]
    [Google Scholar]
  41. Rückert, C., Milse, J., Albersmeier, A., Koch, D. J., Pühler, A. & Kalinowski, J. ( 2008; ). The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genomics 9, 483 [CrossRef]
    [Google Scholar]
  42. Schäfer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  43. Shaw, W. V. ( 1975; ). Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43, 737–755.
    [Google Scholar]
  44. Sperandio, B., Polard, P., Ehrlich, D. S., Renault, P. & Guedon, E. ( 2005; ). Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol 187, 3762–3778.[CrossRef]
    [Google Scholar]
  45. Suda, M., Teramoto, H., Imamiya, T., Inui, M. & Yukawa, H. ( 2008; ). Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Appl Microbiol Biotechnol 81, 505–513.[CrossRef]
    [Google Scholar]
  46. Tanous, C., Soutourina, O., Raynal, B., Hullo, M. F., Mervelet, P., Gilles, A. M., Noirot, P., Danchin, A., England, P. & Martin-Verstraete, I. ( 2008; ). The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis. J Biol Chem 283, 35551–35560.[CrossRef]
    [Google Scholar]
  47. van der Ploeg, J. R., Iwanicka-Nowicka, R., Kertesz, M. A., Leisinger, T. & Hryniewicz, M. M. ( 1997; ). Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol 179, 7671–7678.
    [Google Scholar]
  48. van der Ploeg, J. R., Eichhorn, E. & Leisinger, T. ( 2001; ). Sulfonate–sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol 176, 1–8.[CrossRef]
    [Google Scholar]
  49. Vermeij, P. & Kertesz, M. A. ( 1999; ). Pathways of assimilative sulfur metabolism in Pseudomonas putida. J Bacteriol 181, 5833–5837.
    [Google Scholar]
  50. Wada, M., Awano, N., Haisa, K., Takagi, H. & Nakamori, S. ( 2002; ). Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol Lett 217, 103–107.[CrossRef]
    [Google Scholar]
  51. Wada, M., Awano, N., Yamazawa, H., Takagi, H. & Nakamori, S. ( 2004; ). Purification and characterization of O-acetylserine sulfhydrylase of Corynebacterium glutamicum. Biosci Biotechnol Biochem 68, 1581–1583.[CrossRef]
    [Google Scholar]
  52. Wheeler, P. R., Coldham, N. G., Keating, L., Gordon, S. V., Wooff, E. E., Parish, T. & Hewinson, R. G. ( 2005; ). Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic mycobacteria. J Biol Chem 280, 8069–8078.[CrossRef]
    [Google Scholar]
  53. Yeom, H. J., Hwang, B. J., Lee, M. S., Kim, Y. H. & Lee, H. S. ( 2004; ). Regulation of enzymes involved in methionine biosynthesis in Corynebacterium glutamicum. J Microbiol Biotechnol 14, 373–378.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024976-0
Loading
/content/journal/micro/10.1099/mic.0.024976-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1878 - 1889

Primers used in this study [PDF file](23 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error