1887

Abstract

TolC is a multifunctional outer-membrane protein (OMP) of that folds into a unique /-barrel structure. Previous studies have shown that unlike the biogenesis of -barrel OMPs, such as porins, TolC assembles independently from known periplasmic folding factors. Yet, the assembly of TolC, like that of -barrel OMPs, is dependent on BamA and BamD, two essential components of the -barrel OMP assembly machinery. We have investigated the folding properties and cellular trafficking of a TolC derivative that lacks the entire signal sequence (TolCΔ2–22). A significant amount of TolCΔ2–22 was found to be soluble in the cytoplasm, and a fraction of it folded and trimerized into a conformation similar to that of the normal outer membrane-localized TolC protein. Some TolCΔ2–22 was found to associate with membranes, but failed to assume a wild-type-like folded conformation. The null phenotype of TolCΔ2–22 was exploited to isolate suppressor mutations, the majority of which mapped in . In the suppressor background, TolCΔ2–22 resumed normal function and folded like wild-type TolC. Proper membrane insertion could not be achieved upon incubation of cytoplasmically folded TolCΔ2–22 with purified outer membrane vesicles, showing that even though TolC is intrinsically capable of folding and trimerization, for successful integration into the outer membrane these events need to be tightly coupled to the insertion process, which is mediated by the Bam machinery. Genetic and biochemical data attribute the unique folding and assembly pathways of TolC to its large soluble -helical domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027219-0
2009-06-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1847.html?itemId=/content/journal/micro/10.1099/mic.0.027219-0&mimeType=html&fmt=ahah

References

  1. Andersen C.. 2003; Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria. Rev Physiol Biochem Pharmacol147:122–165
    [Google Scholar]
  2. Andersen C., Hughes C., Koronakis V.. 2002; Electrophysiological behavior of the TolC channel-tunnel in planar lipid bilayers. J Membr Biol185:83–92
    [Google Scholar]
  3. Augustus A. M., Celaya T., Husain F., Humbard M., Misra R.. 2004; Antibiotic-sensitive TolC mutants and their suppressors. J Bacteriol186:1851–1860
    [Google Scholar]
  4. Betton J. M., Hofnung M.. 1996; Folding of a mutant maltose-binding protein of Escherichia coli which forms inclusion bodies. J Biol Chem271:8046–8052
    [Google Scholar]
  5. Bulieris P. V., Behrens S., Holst O., Kleinschmidt J. H.. 2003; Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J Biol Chem278:9092–9099
    [Google Scholar]
  6. Casadaban M. J.. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol104:541–555
    [Google Scholar]
  7. Charlson E. S., Werner J. N., Misra R.. 2006; Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol188:7186–7194
    [Google Scholar]
  8. Collin S., Guilvout I., Chami M., Pugsley A. P.. 2007; YaeT-independent multimerization and outer membrane association of secretin PulD. Mol Microbiol64:1350–1357
    [Google Scholar]
  9. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P.. 1992; Crystal structures explain functional properties of two E. coli porins. Nature358:727–733
    [Google Scholar]
  10. Danese P. N., Silhavy T. J.. 1998; Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli . Annu Rev Genet32:59–94
    [Google Scholar]
  11. de Cock H., Tommassen J.. 1996; Lipopolysaccharides and divalent cations are involved in the formation of an assembly-competent intermediate of outer-membrane protein PhoE of E. coli . EMBO J15:5567–5573
    [Google Scholar]
  12. de Cock H., van Blokland S., Tommassen J.. 1996; In vitro insertion and assembly of outer membrane protein PhoE of Escherichia coli K-12 into the outer membrane: role of Triton X-100. J Biol Chem271:12885–12890
    [Google Scholar]
  13. Derman A. I., Puziss J. W., Bassford P. J., Beckwith J.. 1993; A signal sequence is not required for protein in prlA mutants of Escherichia coli . EMBO J12:879–888
    [Google Scholar]
  14. Eisele J. L., Rosenbusch J. P.. 1990; In vitro folding and oligomerization of a membrane protein: transition of bacterial porin from random coil to native conformation. J Biol Chem265:10217–10220
    [Google Scholar]
  15. Emr S. D., Hanley-Way S., Silhavy T. J.. 1981; Suppressor mutations that restore export of a protein with a defective signal sequence. Cell23:79–88
    [Google Scholar]
  16. Flower A. M., Doebele R. C., Silhavy T. J.. 1994; PrlA and PrlG suppressors reduce the requirement for signal sequence recognition. J Bacteriol176:5607–5614
    [Google Scholar]
  17. Gerken H., Misra R.. 2004; Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli . Mol Microbiol54:620–631
    [Google Scholar]
  18. German G. J., Misra R.. 2001; The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage. J Mol Biol308:579–585
    [Google Scholar]
  19. Guilvout I., Chami M., Engel A., Pugsley A. P., Bayan N.. 2006; Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J25:5241–5249
    [Google Scholar]
  20. Guilvout I., Chami M., Berrier C., Ghazi A., Engel A., Pugsley A. P., Bayan N.. 2008; In vitro multimerization and membrane insertion of bacterial outer membrane secretin PulD. J Mol Biol382:13–23
    [Google Scholar]
  21. Guzman L. M., Belin D., Carson M. J., Beckwith J.. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130
    [Google Scholar]
  22. Jain S., Goldberg M. B.. 2007; Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol189:5393–5398
    [Google Scholar]
  23. Kim S., Yum S., Jo W. S., Lee B. L., Jeong M. H., Ha N. C.. 2008; Expression and biochemical characterization of the periplasmic domain of bacterial outer membrane porin TdeA. J Microbiol Biotechnol18:845–851
    [Google Scholar]
  24. Kloser A. W., Laird M. W., Misra R.. 1996; asmB , a suppressor locus for assembly-defective OmpF mutants of Escherichia coli , is allelic to envA ( lpxC ). J Bacteriol178:5138–5143
    [Google Scholar]
  25. Koronakis V., Li J., Koronakis E., Stauffer K.. 1997; Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Mol Microbiol23:617–626
    [Google Scholar]
  26. Koronakis V., Sharff A., Koronakis E., Luisi B., Hughes C.. 2000; Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature405:914–919
    [Google Scholar]
  27. Krojer T., Sawa J., Schäfer E., Saibil H. R., Ehrmann M., Clausen T.. 2008; Structural basis for the regulated protease and chaperone function of DegP. Nature453:885–890
    [Google Scholar]
  28. Malinverni J. C., Werner J., Kim S., Sklar J. G., Kahne D., Misra R., Silhavy T. J.. 2006; YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli . Mol Microbiol61:151–164
    [Google Scholar]
  29. Masi M., Vuong P., Humbard M., Malone K., Misra R.. 2007; Initial steps of Colicin E1 import across the outer membrane of Escherichia coli . J Bacteriol189:2667–2676
    [Google Scholar]
  30. Misra R.. 2007; First glimpse of the crystal structure of the YaeT's POTRA domains. ACS Chem Biol2:649–651
    [Google Scholar]
  31. Misra R., Peterson A., Ferenci T., Silhavy T. J.. 1991; A genetic approach for analyzing the pathway of LamB assembly into the outer membrane of Escherichia coli . J Biol Chem266:13592–13597
    [Google Scholar]
  32. Missiakas D., Betton J. M., Raina S.. 1996; New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol21:871–884
    [Google Scholar]
  33. Mogensen J. E., Otzen D. E.. 2005; Interactions between folding factors and bacterial outer membrane proteins. Mol Microbiol57:326–346
    [Google Scholar]
  34. Nagel de Zwaig R., Luria S. E.. 1967; Genetics and physiology of colicin-tolerant mutants of Escherichia coli . J Bacteriol94:1112–1123
    [Google Scholar]
  35. Osborne R. S., Silhavy T. J.. 1993; PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J12:3391–3398
    [Google Scholar]
  36. Pilsl H., Braun V.. 1995; Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation. Mol Microbiol16:57–67
    [Google Scholar]
  37. Puziss J. W., Strobel S. M., Bassford P. J. Jr. 1992; Export of maltose-binding protein species with altered charge distribution surrounding the signal peptide hydrophobic core in Escherichia coli cells harboring prl suppressor mutations. J Bacteriol174:92–101
    [Google Scholar]
  38. Rouvière P. E., Gross C. A.. 1996; SurA, a periplasmic protein with peptidyl–prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev10:3170–3182
    [Google Scholar]
  39. Schafer U., Beck K., Muller M.. 1999; Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem274:24567–24574
    [Google Scholar]
  40. Sklar J. G., Wu T., Kahne D., Silhavy T. J.. 2007a; Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli . Genes Dev21:2473–2484
    [Google Scholar]
  41. Sklar J. G., Wu T., Gronenberg L. S., Malinverni J. C., Kahne D., Silhavy T. J.. 2007b; Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli . Proc Natl Acad Sci U S A104:6400–6405
    [Google Scholar]
  42. Strauch K. L., Johnson K., Beckwith J.. 1989; Characterization of degP , a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol171:2689–2696
    [Google Scholar]
  43. Struyve M., Moons M., Tommassen J.. 1991; Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol218:141–148
    [Google Scholar]
  44. Voulhoux R., Bos M. P., Geurtsen J., Mols M., Tommassen J.. 2003; Role of a highly conserved bacterial protein in outer membrane protein assembly. Science299:262–265
    [Google Scholar]
  45. Weissman J. S., Hohl C. M., Kovalenko O., Kashi Y., Chen S., Braig K., Saibil H. R., Fenton W. A., Horwich A. L.. 1995; Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell83:577–587
    [Google Scholar]
  46. Werner J., Misra R.. 2005; YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli . Mol Microbiol57:1450–1459
    [Google Scholar]
  47. Werner J., Augustus A. M., Misra R.. 2003; Assembly of TolC, a structurally unique and multifunctional outer membrane protein of Escherichia coli K-12. J Bacteriol185:6540–6547
    [Google Scholar]
  48. Wu T., Malinverni J., Ruiz N., Kim S., Silhavy T. J., Kahne D.. 2005; Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli . Cell121:235–245
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027219-0
Loading
/content/journal/micro/10.1099/mic.0.027219-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error