1887

Abstract

colonizes the human nasopharynx asymptomatically, often for prolonged periods, but occasionally invades from this site to cause life-threatening infection. In the nasopharynx aggregated organisms are closely attached to the epithelial surface, in a state in which the expression of components of the bacterial envelope differs significantly from that found in organisms multiplying exponentially in liquid phase culture or in the blood. We and others have hypothesized that here they are in the biofilm state, and to explore this we have investigated biofilm formation by the serogroup B strain MC58 on an abiotic surface, in a sorbarod system. Transcriptional changes were analysed, focusing on alteration in gene expression relevant to polysaccharide capsulation, lipooligosaccharide and outer-membrane protein synthesis – all phenotypes of importance in epithelial colonization. We report downregulation of genes controlling capsulation and the production of core oligosaccharide, and upregulation of genes encoding a range of outer-membrane components, reflecting phenotypic changes that have been established to occur in the colonizing state. A limited comparison with organisms recovered from an extended period of co-cultivation with epithelial cells suggests that this model system may better mirror natural colonization than do short-term meningococcal/epithelial cell co-cultivation systems. Modelling prolonged meningococcal colonization with a sorbarod system offers insight into gene expression during this important, but experimentally relatively inaccessible, phase of human infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026559-0
2009-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1940.html?itemId=/content/journal/micro/10.1099/mic.0.026559-0&mimeType=html&fmt=ahah

References

  1. Ala'Aldeen D. A., Neal K. R., Ait-Tahar K., Nguyen-Van-Tam J. S., English A., Falla T. J., Hawkey P. M., Slack R. C. 2000; Dynamics of meningococcal long-term carriage among university students and their implications for mass vaccination. J Clin Microbiol 38:2311–2316
    [Google Scholar]
  2. Bacon J., James B. W., Wernisch L., Williams A., Morley K. A., Hatch G. J., Mangan J. A., Hinds J., Stoker N. G. other authors 2004; The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis . Tuberculosis (Edinb 84:205–217
    [Google Scholar]
  3. Bennett J. S., Griffiths D. T., McCarthy N. D., Sleeman K. L., Jolley K. A., Crook D. W., Maiden M. C. 2005; Genetic diversity and carriage dynamics of Neisseria lactamica in infants. Infect Immun 73:2424–2432
    [Google Scholar]
  4. Budhani R. K., Struthers J. K. 1998; Interaction of Streptococcus pneumoniae and Moraxella catarrhalis : investigation of the indirect pathogenic role of beta-lactamase-producing moraxellae by use of a continuous-culture biofilm system. Antimicrob Agents Chemother 42:2521–2526
    [Google Scholar]
  5. Caugant D. A., Hoiby E. A., Magnus P., Scheel O., Hoel T., Bjune G., Wedege E., Eng J., Froholm L. O. 1994; Asymptomatic carriage of Neisseria meningitidis in a randomly sampled population. J Clin Microbiol 32:323–330
    [Google Scholar]
  6. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464
    [Google Scholar]
  7. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745
    [Google Scholar]
  8. Coticchia J., Zuliani G., Coleman C., Carron M., Gurrola J. II, Haupert M., Berk R. 2007; Biofilm surface area in the pediatric nasopharynx: chronic rhinosinusitis vs obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 133:110–114
    [Google Scholar]
  9. Danese P. N., Pratt L. A., Kolter R. 2000; Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596
    [Google Scholar]
  10. Davey M. E., Duncan M. J. 2006; Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis . J Bacteriol 188:5510–5523
    [Google Scholar]
  11. Davies D. 2003; Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122
    [Google Scholar]
  12. Davies D. G., Chakrabarty A. M., Geesey G. G. 1993; Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa . Appl Environ Microbiol 59:1181–1186
    [Google Scholar]
  13. Deghmane A. E., Giorgini D., Larribe M., Alonso J. M., Taha M. K. 2002; Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol 43:1555–1564
    [Google Scholar]
  14. Exley R. M., Sim R., Goodwin L., Winterbotham M., Schneider M. C., Read R. C., Tang C. M. 2009; Identification of meningococcal genes necessary for colonization of human upper airway tissue. Infect Immun 77:45–51
    [Google Scholar]
  15. Ferrari G., Garaguso I., Adu-Bobie J., Doro F., Taddei A. R., Biolchi A., Brunelli B., Giuliani M. M., Pizza M. other authors 2006; Outer membrane vesicles from group B Neisseria meningitidis Δ gna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles. Proteomics 6:1856–1866
    [Google Scholar]
  16. Giuliani M. M., Adu-Bobie J., Comanducci M., Aricò B., Savino S., Santini L., Brunelli B., Bambini S., Biolchi A. other authors 2006; A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834–10839
    [Google Scholar]
  17. Gold R., Goldschneider I., Lepow M. L., Draper T. F., Randolph M. 1978; Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. J Infect Dis 137:112–121
    [Google Scholar]
  18. Goldschneider I., Gotschlich E. C., Artenstein M. S. 1969; Human immunity to the meningococcus. II. Development of natural immunity. J Exp Med 129:1327–1348
    [Google Scholar]
  19. Greiner L. L., Edwards J. L., Shao J., Rabinak C., Entz D., Apicella M. A. 2005; Biofilm formation by Neisseria gonorrhoeae . Infect Immun 73:1964–1970
    [Google Scholar]
  20. Grifantini R., Bartolini E., Muzzi A., Draghi M., Frigimelica E., Berger J., Ratti G., Petracca R., Galli G. other authors 2002; Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol 20:914–921
    [Google Scholar]
  21. Gruenert D. C., Basbaum C. B., Welsh M. J., Li M., Finkbeiner W. E., Nadel J. A. 1988; Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc Natl Acad Sci U S A 85:5951–5955
    [Google Scholar]
  22. Hodgson A. E., Nelson S. M., Brown M. R., Gilbert P. 1995; A simple in vitro model for growth control of bacterial biofilms. J Appl Bacteriol 79:87–93
    [Google Scholar]
  23. Joseph L. A., Wright A. C. 2004; Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 186:889–893
    [Google Scholar]
  24. Jurcisek J. A., Bakaletz L. O. 2007; Biofilms formed by nontypeable Haemophilus influenzae in vivo contain both double-stranded DNA and type IV pilin protein. J Bacteriol 189:3868–3875
    [Google Scholar]
  25. Kaplan J. B., Velliyagounder K., Ragunath C., Rohde H., Mack D., Knobloch J. K., Ramasubbu N. 2004; Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186:8213–8220
    [Google Scholar]
  26. Lappann M., Haagensen J. A., Claus H., Vogel U., Molin S. 2006; Meningococcal biofilm formation: structure, development and phenotypes in a standardized continuous flow system. Mol Microbiol 62:1292–1309
    [Google Scholar]
  27. Lappann M., Claus H., van Alen T., Harmsen M., Molin S., Vogel U. 2008; Role of cell death and autolysis for DNA release and biofilm development in Neisseria meningitidis . In 16th International Pathogenic Neisseria Conference2008 pp 108–109 Rotterdam, The Netherlands:
    [Google Scholar]
  28. Luke N. R., Jurcisek J. A., Bakaletz L. O., Campagnari A. A. 2007; Contribution of Moraxella catarrhalis type IV pili to nasopharyngeal colonization and biofilm formation. Infect Immun 75:5559–5564
    [Google Scholar]
  29. Maiden M. C., Stuart J. M. 2002; Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet 359:1829–1831
    [Google Scholar]
  30. Martin D., Cadieux N., Hamel J., Brodeur B. R. 1997; Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J Exp Med 185:1173–1183
    [Google Scholar]
  31. Moxon E. R., Sweetman W. A., Deadman M. E., Ferguson D. J., Hood D. W. 2008; Haemophilus influenzae biofilms: hypothesis or fact?. Trends Microbiol 16:95–100
    [Google Scholar]
  32. Muli F. W., Struthers J. K. 1998; The growth of Gardnerella vaginalis and Lactobacillus acidophilus in Sorbarod biofilms. J Med Microbiol 47:401–405
    [Google Scholar]
  33. Namork E., Brandtzaeg P. 2002; Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet 360:1741
    [Google Scholar]
  34. O'Toole G. A., Pratt L. A., Watnick P. I., Newman D. K., Weaver V. B., Kolter R. 1999; Genetic approaches to study of biofilms. Methods Enzymol 310:91–109
    [Google Scholar]
  35. Schagger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379
    [Google Scholar]
  36. Schooling S. R., Beveridge T. J. 2006; Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957
    [Google Scholar]
  37. Shih G. C., Kahler C. M., Carlson R. W., Rahman M. M., Stephens D. S. 2001; gmhX , a novel gene required for the incorporation of l- glycero -d- manno -heptose into lipooligosaccharide in Neisseria meningitidis . Microbiology 147:2367–2377
    [Google Scholar]
  38. Stabler R. A., Marsden G. L., Witney A. A., Li Y., Bentley S. D., Tang C. M., Hinds J. 2005; Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. Microbiology 151:2907–2922
    [Google Scholar]
  39. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119
    [Google Scholar]
  40. Vaughan T. E., Skipp P. J., O'Connor C. D., Hudson M. J., Vipond R., Elmore M. J., Gorringe A. R. 2006; Proteomic analysis of Neisseria lactamica and Neisseria meningitidis outer membrane vesicle vaccine antigens. Vaccine 24:5277–5293
    [Google Scholar]
  41. Virji M., Makepeace K., Peak I. R., Ferguson D. J., Jennings M. P., Moxon E. R. 1995; Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol Microbiol 18:741–754
    [Google Scholar]
  42. Waite R. D., Struthers J. K., Dowson C. G. 2001; Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol Microbiol 42:1223–1232
    [Google Scholar]
  43. Williams J. N., Skipp P. J., Humphries H. E., Christodoulides M., O'Connor C. D., Heckels J. E. 2007; Proteomic analysis of outer membranes and vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharide-deficient mutant. Infect Immun 75:1364–1372
    [Google Scholar]
  44. Yi K., Rasmussen A. W., Gudlavalleti S. K., Stephens D. S., Stojiljkovic I. 2004; Biofilm formation by Neisseria meningitidis . Infect Immun 72:6132–6138
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026559-0
Loading
/content/journal/micro/10.1099/mic.0.026559-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error