1887

Abstract

The gene encodes one of the two major small heat-shock proteins of and is induced under different conditions, such as low and high temperatures, osmotic or oxidative stress and high sugar or ethanol concentrations. However, few studies could demonstrate any correlation between deletion or overexpression and a phenotype of sensitivity/resistance, making it difficult to attribute a role for Hsp12p under several of these stress conditions. We investigated the possible role of Hsp12p in yeast freezing tolerance. Contrary to what would be expected, the null mutant when subjected to prolonged storage at −20 °C showed an increased resistance to freezing when compared with the isogenic wild-type strain. Because the mutant strain displayed a higher intracellular trehalose concentration than the wild-type, which could mask the effect of manipulating , we overexpressed the gene in a trehalose-6-phosphate synthase () null mutant. The Δ strain overexpressing showed an increase in resistance to freezing storage, indicating that Hsp12p plays a role in freezing tolerance in a way that seems to be interchangeable with trehalose. In addition, we show that overexpression of in this Δ strain also increased resistance to heat shock and that absence of compromises the ability of yeast cells to accumulate high levels of trehalose in response to a mild heat stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025981-0
2009-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/2021.html?itemId=/content/journal/micro/10.1099/mic.0.025981-0&mimeType=html&fmt=ahah

References

  1. Alves-Araújo, C., Almeida, M. J., Sousa, M. J. & Leão, C. ( 2004; ). Freeze tolerance of the yeast Torulaspora delbrueckii: cellular and biochemical basis. FEMS Microbiol Lett 240, 7–14.[CrossRef]
    [Google Scholar]
  2. Attfield, P. V. ( 1987; ). Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225, 259–263.[CrossRef]
    [Google Scholar]
  3. Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., Vladimirova, S. V. & Voinikov, V. K. ( 2002; ). Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2, 5 [CrossRef]
    [Google Scholar]
  4. Carrillo, D., Vicente-Soler, J. & Gacto, M. ( 1992; ). Activation of neutral trehalase by fermentable sugars and cAMP in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Lett 98, 61–66.[CrossRef]
    [Google Scholar]
  5. De Hertogh, B., Hancy, F., Goffeau, A. & Baret, P. V. ( 2006; ). Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172, 771–781.
    [Google Scholar]
  6. Diniz-Mendes, L., Bernardes, E., de Araujo, P. S., Panek, A. D. & Paschoalin, V. M. ( 1999; ). Preservation of frozen yeast cells by trehalose. Biotechnol Bioeng 65, 572–578.[CrossRef]
    [Google Scholar]
  7. Fujita, K., Kawai, R., Iwahashi, H. & Komatsu, Y. ( 1998; ). Hsp104 responds to heat and oxidative stress with different intracellular localization in Saccharomyces cerevisiae. Biochem Biophys Res Commun 248, 542–547.[CrossRef]
    [Google Scholar]
  8. Hino, A., Mihara, K., Nakashima, K. & Takano, H. ( 1990; ). Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol 56, 1386–1391.
    [Google Scholar]
  9. Homma, T., Iwahashi, H. & Komatsu, Y. ( 2003; ). Yeast gene expression during growth at low temperature. Cryobiology 46, 230–237.[CrossRef]
    [Google Scholar]
  10. Hottiger, T., Boller, T. & Wiemken, A. ( 1987; ). Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220, 113–115.[CrossRef]
    [Google Scholar]
  11. Hottiger, T., Boller, T. & Wiemken, A. ( 1989; ). Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett 255, 431–434.[CrossRef]
    [Google Scholar]
  12. Inoue, H., Nojima, H. & Okayama, H. ( 1990; ). High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.[CrossRef]
    [Google Scholar]
  13. Iwahashi, H., Obuchi, K., Fujii, S. & Komatsu, Y. ( 1997; ). Barotolerance is dependent on both trehalose and heat shock protein 104 but is essentially different from thermotolerance in Saccharomyces cerevisiae. Lett Appl Microbiol 25, 43–47.[CrossRef]
    [Google Scholar]
  14. Iwahashi, H., Nwaka, S., Obuchi, K. & Komatsu, Y. ( 1998; ). Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl Environ Microbiol 64, 4614–4617.
    [Google Scholar]
  15. Jules, M., Beltran, G., Francois, J. & Parrou, J. L. ( 2008; ). New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl Environ Microbiol 74, 605–614.[CrossRef]
    [Google Scholar]
  16. Kandror, O. & Goldberg, A. L. ( 1997; ). Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A 94, 4978–4981.[CrossRef]
    [Google Scholar]
  17. Kandror, O., DeLeon, A. & Goldberg, A. L. ( 2002; ). Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A 99, 9727–9732.[CrossRef]
    [Google Scholar]
  18. Kandror, O., Bretschneider, N., Kreydin, E., Cavalieri, D. & Goldberg, A. L. ( 2004; ). Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13, 771–781.[CrossRef]
    [Google Scholar]
  19. Kuenzi, M. T. & Fiechter, A. ( 1972; ). Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch Mikrobiol 84, 254–265.[CrossRef]
    [Google Scholar]
  20. Lillie, S. H. & Pringle, J. R. ( 1980; ). Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143, 1384–1394.
    [Google Scholar]
  21. Motshwene, P., Karreman, R., Kgari, G., Brandt, W. & Lindsey, G. ( 2004; ). LEA (late embryonic abundant)-like protein Hsp 12 (heat-shock protein 12) is present in the cell wall and enhances the barotolerance of the yeast Saccharomyces cerevisiae. Biochem J 377, 769–774.[CrossRef]
    [Google Scholar]
  22. Mtwisha, L., Brandt, W., McCready, S. & Lindsey, G. G. ( 1998; ). HSP 12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol Biol 37, 513–521.[CrossRef]
    [Google Scholar]
  23. Mumberg, D., Muller, R. & Funk, M. ( 1995; ). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122.[CrossRef]
    [Google Scholar]
  24. Murata, Y., Homma, T., Kitagawa, E., Momose, Y., Sato, M. S., Odani, M., Shimizu, H., Hasegawa-Mizusawa, M., Matsumoto, R. & other authors ( 2006; ). Genome-wide expression analysis of yeast response during exposure to 4 degrees C. Extremophiles 10, 117–128.[CrossRef]
    [Google Scholar]
  25. NDong, C., Danyluk, J., Wilson, K. E., Pocock, T., Huner, N. P. & Sarhan, F. ( 2002; ). Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129, 1368–1381.[CrossRef]
    [Google Scholar]
  26. Odani, M., Komatsu, Y., Oka, S. & Iwahashi, H. ( 2003; ). Screening of genes that respond to cryopreservation stress using yeast DNA microarray. Cryobiology 47, 155–164.[CrossRef]
    [Google Scholar]
  27. Panek, A. D. ( 1975; ). Trehalose synthesis during starvation of Baker's yeast. Appl Microbiol Biotechnol 2, 39–46.
    [Google Scholar]
  28. Parrou, J. L., Teste, M. A. & Francois, J. ( 1997; ). Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143, 1891–1900.[CrossRef]
    [Google Scholar]
  29. Plourde-Owobi, L., Durner, S., Parrou, J. L., Wieczorke, R., Goma, G. & Francois, J. ( 1999; ). AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. J Bacteriol 181, 3830–3832.
    [Google Scholar]
  30. Plourde-Owobi, L., Durner, S., Goma, G. & Francois, J. ( 2000; ). Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability. Int J Food Microbiol 55, 33–40.[CrossRef]
    [Google Scholar]
  31. Praekelt, U. M. & Meacock, P. A. ( 1990; ). HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 223, 97–106.[CrossRef]
    [Google Scholar]
  32. Prudencio, C., Sansonetty, F. & Corte-Real, M. ( 1998; ). Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry 31, 307–313.[CrossRef]
    [Google Scholar]
  33. Randez-Gil, F., Sanz, P. & Prieto, J. A. ( 1999; ). Engineering baker's yeast: room for improvement. Trends Biotechnol 17, 237–244.[CrossRef]
    [Google Scholar]
  34. Sales, K., Brandt, W., Rumbak, E. & Lindsey, G. ( 2000; ). The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta 1463, 267–278.[CrossRef]
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F.& Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Sanger, F. & Coulson, A. R. ( 1975; ). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94, 441–448.[CrossRef]
    [Google Scholar]
  37. Schiestl, R. H. & Gietz, R. D. ( 1989; ). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16, 339–346.[CrossRef]
    [Google Scholar]
  38. Seymour, I. J. & Piper, P. W. ( 1999; ). Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145, 231–239.[CrossRef]
    [Google Scholar]
  39. Singer, M. A. & Lindquist, S. ( 1998; ). Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16, 460–468.[CrossRef]
    [Google Scholar]
  40. Stone, R. L., Matarese, V., Magee, B. B., Magee, P. T. & Bernlohr, D. A. ( 1990; ). Cloning, sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is negatively regulated by glucose and positively by lipids. Gene 96, 171–176.[CrossRef]
    [Google Scholar]
  41. Taxis, C. & Knop, M. ( 2006; ). System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques 40, 73–78.[CrossRef]
    [Google Scholar]
  42. Thevelein, J. M. ( 1984; ). Regulation of trehalose mobilization in fungi. Microbiol Rev 48, 42–59.
    [Google Scholar]
  43. Thevelein, J. M. ( 1991; ). Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5, 1301–1307.[CrossRef]
    [Google Scholar]
  44. Van Dijck, P., Colavizza, D., Smet, P. & Thevelein, J. M. ( 1995; ). Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61, 109–115.
    [Google Scholar]
  45. Varela, J. C., Praekelt, U. M., Meacock, P. A., Planta, R. J. & Mager, W. H. ( 1995; ). The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15, 6232–6245.
    [Google Scholar]
  46. Wenzel, T. J., Teunissen, A. W. & de Steensma, H. Y. ( 1995; ). PDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res 23, 883–884.[CrossRef]
    [Google Scholar]
  47. Wiemken, A. ( 1990; ). Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 58, 209–217.[CrossRef]
    [Google Scholar]
  48. Zarka, D. G., Vogel, J. T., Cook, D. & Thomashow, M. F. ( 2003; ). Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133, 910–918.[CrossRef]
    [Google Scholar]
  49. Zhang, L., Ohta, A., Takagi, M. & Imai, R. ( 2000; ). Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem 127, 611–616.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025981-0
Loading
/content/journal/micro/10.1099/mic.0.025981-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error