1887

Abstract

Phytoplasma asteris’, onion yellows strain (OY), a mildly pathogenic line (OY-M), is a phytopathogenic bacterium transmitted by leafhoppers. OY-M contains two types of plasmids (EcOYM and pOYM), each of which possesses a gene encoding the putative transmembrane protein, ORF3. A non-insect-transmissible line of this phytoplasma (OY-NIM) has the corresponding plasmids (EcOYNIM and pOYNIM), but pOYNIM lacks . Here we show that in OY-M, is transcribed from two putative promoters and that on EcOYNIM, one of the promoter sequences is mutated and the other deleted. We also show by immunohistochemical analysis that ORF3 is not expressed in OY-NIM-infected plants. Moreover, ORF3 protein seems to be preferentially expressed in OY-M-infected insects rather than in plants. We speculate that ORF3 may play a role in the interactions of OY with its insect host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027409-0
2009-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/2058.html?itemId=/content/journal/micro/10.1099/mic.0.027409-0&mimeType=html&fmt=ahah

References

  1. Bai, X., Zhang, J., Ewing, A., Miller, S. A., Jancso Radek, A., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A. & other authors ( 2006; ). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188, 3682–3696.[CrossRef]
    [Google Scholar]
  2. Berg, M., Melcher, U. & Fletcher, J. ( 2001; ). Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin. Gene 275, 57–64.[CrossRef]
    [Google Scholar]
  3. Berho, N., Duret, S. & Renaudin, J. ( 2006a; ). Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Spiroplasma citri. Microbiology 152, 873–886.[CrossRef]
    [Google Scholar]
  4. Berho, N., Duret, S., Danet, J. L. & Renaudin, J. ( 2006b; ). Plasmid pSci6 from Spiroplasma citri GII-3 confers insect transmissibility to the non-transmissible strain S. citri 44. Microbiology 152, 2703–2716.[CrossRef]
    [Google Scholar]
  5. Botti, S. & Bertaccini, A. ( 2006; ). Phytoplasma infection through seed transmission: further observations. In Abstracts, 16th International Organization of Mycoplasmology Conference, Cambridge, UK, p. 76.
  6. Christensen, N. M., Axelsen, K. B., Nicolaisen, M. & Schulz, A. ( 2005; ). Phytoplasmas and their interactions with hosts. Trends Plant Sci 10, 526–535.[CrossRef]
    [Google Scholar]
  7. Cordova, I., Jones, P., Harrison, N. A. & Oropeza, C. ( 2003; ). In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Mol Plant Pathol 4, 99–108.[CrossRef]
    [Google Scholar]
  8. Doi, Y., Teranaka, M., Yora, K. & Asuyama, H. ( 1967; ). Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows or paulownia witches' broom. Ann Phytopathol Soc Jpn 33, 259–266.[CrossRef]
    [Google Scholar]
  9. Duret, S., Berho, N., Danet, J. L., Garnier, M. & Renaudin, J. ( 2003; ). Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Appl Environ Microbiol 69, 6225–6234.[CrossRef]
    [Google Scholar]
  10. Firrao, G., Garcia-Chapa, M. & Marzachì, C. ( 2007; ). Phytoplasmas: genetics, diagnosis and relationships with the plant and insect host. Front Biosci 12, 1353–1375.[CrossRef]
    [Google Scholar]
  11. Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G. & other authors ( 1995; ). The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.[CrossRef]
    [Google Scholar]
  12. Grimm, D., Tilly, K., Byram, R., Stewart, P. E., Krum, J. G., Bueschel, D. M., Schwan, T. G., Policastro, P. F., Elias, A. F. & Rosa, P. A. ( 2004; ). Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101, 3142–3147.[CrossRef]
    [Google Scholar]
  13. Gruber, T. M. & Gross, C. A. ( 2003; ). Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57, 441–466.[CrossRef]
    [Google Scholar]
  14. Hogenhout, S. A., Oshima, K., Ammar, el-D., Kakizawa, S., Kingdom, H. N. & Namba, S. ( 2008; ). Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9, 403–423.[CrossRef]
    [Google Scholar]
  15. Hovius, J. W., van Dam, A. P. & Fikrig, E. ( 2007; ). Tick–host–pathogen interactions in Lyme borreliosis. Trends Parasitol 23, 434–438.[CrossRef]
    [Google Scholar]
  16. Jung, H. Y., Miyata, S., Oshima, K., Kakizawa, S., Nishigawa, H., Wei, W., Suzuki, S., Ugaki, M., Hibi, T. & Namba, S. ( 2003; ). First complete nucleotide sequence and heterologous gene organization of the two rRNA operons in the phytoplasma genome. DNA Cell Biol 22, 209–215.[CrossRef]
    [Google Scholar]
  17. Kakizawa, S., Oshima, K., Kuboyama, T., Nishigawa, H., Jung, H. Y., Sawayanagi, T., Tsuchizaki, T., Miyata, S., Ugaki, M. & Namba, S. ( 2001; ). Cloning and expression analysis of phytoplasma protein translocation genes. Mol Plant Microbe Interact 14, 1043–1050.[CrossRef]
    [Google Scholar]
  18. Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Tanaka, M., Miyata, S., Ugaki, M. & Namba, S. ( 2004; ). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135–142.[CrossRef]
    [Google Scholar]
  19. Khan, A. J., Botti, S., Al-Subhi, A. M., Zaidi, M. A., Altosaar, I., Alma, A. & Bertaccini, A. ( 2003; ). Molecular characterization of the 16S rRNA gene of phytoplasmas detected in two leafhopper species associated with alfalfa plants infected with witches' broom in Oman. Phytopathol Mediterr 42, 257–267.
    [Google Scholar]
  20. Killiny, N., Castroviejo, M. & Saillard, C. ( 2005; ). Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps. Phytopathology 95, 541–548.[CrossRef]
    [Google Scholar]
  21. Killiny, N., Batailler, B., Foissac, X. & Saillard, C. ( 2006; ). Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology 152, 1221–1230.[CrossRef]
    [Google Scholar]
  22. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A. M., Reinhardt, R. & Seemüller, E. ( 2008; ). The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 9, 306 [CrossRef]
    [Google Scholar]
  23. Kuboyama, T., Huang, C. C., Lu, X., Sawayanagi, T., Kanazawa, T., Kagami, T., Matsuda, I., Tsuchizaki, T. & Namba, S. ( 1998; ). A plasmid isolated from phytopathogenic onion yellows phytoplasma and its heterogeneity in the pathogenic phytoplasma mutant. Mol Plant Microbe Interact 11, 1031–1037.[CrossRef]
    [Google Scholar]
  24. Lee, I. M., Davis, R. E. & Gundersen-Rindal, D. E. ( 2000; ). Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54, 221–255.[CrossRef]
    [Google Scholar]
  25. Liefting, L. W., Shaw, M. E. & Kirkpatrick, B. C. ( 2004; ). Sequence analysis of two plasmids from the phytoplasma beet leafhopper-transmitted virescence agent. Microbiology 150, 1809–1817.[CrossRef]
    [Google Scholar]
  26. Liefting, L. W., Andersen, M. T., Lough, T. J. & Beever, R. E. ( 2006; ). Comparative analysis of the plasmids from two isolates of “Candidatus Phytoplasma australiense”. Plasmid 56, 138–144.[CrossRef]
    [Google Scholar]
  27. Mulligan, M. E., Hawley, D. K., Entriken, R. & McClure, W. R. ( 1984; ). Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res 12, 789–800.[CrossRef]
    [Google Scholar]
  28. Neelakanta, G., Li, X., Pal, U., Liu, X., Beck, D. S., DePonte, K., Fish, D., Kantor, F. S. & Fikrig, E. ( 2007; ). Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 3, e33 [CrossRef]
    [Google Scholar]
  29. Nishigawa, H., Miyata, S., Oshima, K., Sawayanagi, T., Komoto, A., Kuboyama, T., Matsuda, I., Tsuchizaki, T. & Namba, S. ( 2001; ). In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology 147, 507–513.
    [Google Scholar]
  30. Nishigawa, H., Oshima, K., Kakizawa, S., Jung, H. Y., Kuboyama, T., Miyata, S., Ugaki, M. & Namba, S. ( 2002a; ). Evidence of intermolecular recombination between extrachromosomal DNAs in phytoplasma: a trigger for the biological diversity of phytoplasma? Microbiology 148, 1389–1396.
    [Google Scholar]
  31. Nishigawa, H., Oshima, K., Kakizawa, S., Jung, H. Y., Kuboyama, T., Miyata, S., Ugaki, M. & Namba, S. ( 2002b; ). A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene 298, 195–201.[CrossRef]
    [Google Scholar]
  32. Nishigawa, H., Oshima, K., Miyata, S., Ugaki, M. & Namba, S. ( 2003; ). Complete set of extrachromosomal DNAs from three pathogenic lines of onion yellows phytoplasma and use of PCR to differentiate each line. J Gen Plant Pathol 69, 194–198.
    [Google Scholar]
  33. Oshima, K., Kakizawa, S., Nishigawa, H., Kuboyama, T., Miyata, S., Ugaki, M. & Namba, S. ( 2001a; ). A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination? Virology 285, 270–277.[CrossRef]
    [Google Scholar]
  34. Oshima, K., Shiomi, T., Kuboyama, T., Sawayanagi, T., Nishigawa, H., Kakizawa, S., Miyata, S., Ugaki, M. & Namba, S. ( 2001b; ). Isolation and characterization of derivative lines of the onion yellows phytoplasma that do not cause stunting or phloem hyperplasia. Phytopathology 91, 1024–1029.[CrossRef]
    [Google Scholar]
  35. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S. & other authors ( 2004; ). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36, 27–29.[CrossRef]
    [Google Scholar]
  36. Pal, U., Yang, X., Chen, M., Bockenstedt, L. K., Anderson, J. F., Flavell, R. A., Norgard, M. V. & Fikrig, E. ( 2004; ). OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113, 220–230.[CrossRef]
    [Google Scholar]
  37. Purcell, A. H. ( 1982; ). Insect vector relationships with prokaryotic plant pathogens. Annu Rev Phytopathol 20, 397–417.[CrossRef]
    [Google Scholar]
  38. Shiomi, T., Tanaka, M., Wakiya, H. & Zenbayashi, R. ( 1996; ). Occurrence of welsh onion yellows. Ann Phytopathol Soc Jpn 62, 258–260.[CrossRef]
    [Google Scholar]
  39. Sorensen, K. I., Baker, K. E., Kelln, R. A. & Neuhard, J. ( 1993; ). Nucleotide pool-sensitive selection of the transcriptional start site in vivo at the Salmonella typhimurium pyrC and pyrD promoters. J Bacteriol 175, 4137–4144.
    [Google Scholar]
  40. Stewart, P. E., Byram, R., Grimm, D., Tilly, K. & Rosa, P. A. ( 2005; ). The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid 53, 1–13.[CrossRef]
    [Google Scholar]
  41. Suzuki, S., Oshima, K., Kakizawa, S., Arashida, R., Jung, H. Y., Yamaji, Y., Nishigawa, H., Ugaki, M. & Namba, S. ( 2006; ). Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A 103, 4252–4257.[CrossRef]
    [Google Scholar]
  42. Thomas, C. M. ( 2004; ). Evolution and population genetics of bacterial plasmids. In Plasmid Biology, pp. 509–528. Edited by B. E. Funnell. & G. J. Phillips. Washington, DC: American Society for Microbiology.
  43. Tran-Nguyen, L. T. T. & Gibb, K. S. ( 2006; ). Extrachromosomal DNA isolated from tomato big bud and Candidatus Phytoplasma australiense phytoplasma strains. Plasmid 56, 153–166.[CrossRef]
    [Google Scholar]
  44. Vivian, A., Murillo, J. & Jackson, R. W. ( 2001; ). The roles of plasmids in phytopathogenic bacteria: mobile arsenals? Microbiology 147, 763–780.
    [Google Scholar]
  45. Wade, J. T., Roa, D. C., Grainger, D. C., Hurd, D., Busby, S. J., Struhl, K. & Nudler, E. ( 2006; ). Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 13, 806–814.[CrossRef]
    [Google Scholar]
  46. Wagner, L. A., Weiss, R. B., Driscoll, R., Dunn, D. S. & Gesteland, R. F. ( 1990; ). Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res 18, 3529–3535.[CrossRef]
    [Google Scholar]
  47. Webb, D. R., Bonfiglioli, R. G., Carraro, L., Osler, R. H. & Symons, R. H. ( 1999; ). Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology 89, 894–901.[CrossRef]
    [Google Scholar]
  48. Weiner, J., Herrmann, R. & Browning, G. F. ( 2000; ). Transcription in Mycoplasma pneumoniae. Nucleic Acids Res 28, 4488–4496.[CrossRef]
    [Google Scholar]
  49. Weintraub, P. G. & Beanland, L. ( 2006; ). Insect vectors of phytoplasmas. Annu Rev Entomol 51, 91–111.[CrossRef]
    [Google Scholar]
  50. Wilson, H. R., Chan, P. T. & Turnbough, C. L., Jr ( 1987; ). Nucleotide sequence and expression of the pyrC gene of Escherichia coli K-12. J Bacteriol 169, 3051–3058.
    [Google Scholar]
  51. Wilson, H. R., Archer, C. D., Liu, J. K. & Turnbough, C. L., Jr ( 1992; ). Translational control of pyrC expression mediated by nucleotide-sensitive selection of transcriptional start sites in Escherichia coli. J Bacteriol 174, 514–524.
    [Google Scholar]
  52. Xiong, X. F. & Reznikoff, W. S. ( 1993; ). Transcriptional slippage during the transcription initiation process at a mutant lac promoter in vivo. J Mol Biol 231, 569–580.[CrossRef]
    [Google Scholar]
  53. Yang, X. F., Pal, U., Alani, S. M., Fikrig, E. & Norgard, M. V. ( 2004; ). Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199, 641–648.[CrossRef]
    [Google Scholar]
  54. Ye, F., Melcher, U. & Fletcher, J. ( 1997; ). Molecular characterization of a gene encoding a membrane protein of Spiroplasma citri. Gene 189, 95–100.[CrossRef]
    [Google Scholar]
  55. Yu, J., Wayadande, A. C. & Fletcher, J. ( 2000; ). Spiroplasma citri surface protein P89 implicated in adhesion to cells of the vector, Circulifer tenellus. Phytopathology 90, 716–722.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027409-0
Loading
/content/journal/micro/10.1099/mic.0.027409-0
Loading

Data & Media loading...

Supplements

SDS-PAGE analysis of overexpressed and purified ORF3. Lane 1, molecular markers; lane 2, purified ORF3. The arrowhead indicates the band of ORF3 protein. [ PDF] (79 kb) Transcriptional analysis of EcOYM-encoded genes. RT-PCR analysis of EcOYM-encoded genes ( ) was performed using total RNA isolated from OY-M-infected insects. The lengths of are 486, 603, 465 and 315 bp, respectively. The full-length of is 1305 bp, but only a partial region was amplified. To prove an absence of DNA contamination in the total RNA, PCR analysis of the OY-M gene was performed without reverse transcription (negative control). [ PDF] (84 kb) Complete set of EcOY-DNAs and pOY plasmids from OY lines. is encoded on EcOYNIM but not on pOYNIM. The major promoter of (ORF3-pro2) is indicated by the open arrows on EcOYW and EcOYM, but it is not encoded on EcOYNIM. [ PDF] (88 kb)

PDF

SDS-PAGE analysis of overexpressed and purified ORF3. Lane 1, molecular markers; lane 2, purified ORF3. The arrowhead indicates the band of ORF3 protein. [ PDF] (79 kb) Transcriptional analysis of EcOYM-encoded genes. RT-PCR analysis of EcOYM-encoded genes ( ) was performed using total RNA isolated from OY-M-infected insects. The lengths of are 486, 603, 465 and 315 bp, respectively. The full-length of is 1305 bp, but only a partial region was amplified. To prove an absence of DNA contamination in the total RNA, PCR analysis of the OY-M gene was performed without reverse transcription (negative control). [ PDF] (84 kb) Complete set of EcOY-DNAs and pOY plasmids from OY lines. is encoded on EcOYNIM but not on pOYNIM. The major promoter of (ORF3-pro2) is indicated by the open arrows on EcOYW and EcOYM, but it is not encoded on EcOYNIM. [ PDF] (88 kb)

PDF

SDS-PAGE analysis of overexpressed and purified ORF3. Lane 1, molecular markers; lane 2, purified ORF3. The arrowhead indicates the band of ORF3 protein. [ PDF] (79 kb) Transcriptional analysis of EcOYM-encoded genes. RT-PCR analysis of EcOYM-encoded genes ( ) was performed using total RNA isolated from OY-M-infected insects. The lengths of are 486, 603, 465 and 315 bp, respectively. The full-length of is 1305 bp, but only a partial region was amplified. To prove an absence of DNA contamination in the total RNA, PCR analysis of the OY-M gene was performed without reverse transcription (negative control). [ PDF] (84 kb) Complete set of EcOY-DNAs and pOY plasmids from OY lines. is encoded on EcOYNIM but not on pOYNIM. The major promoter of (ORF3-pro2) is indicated by the open arrows on EcOYW and EcOYM, but it is not encoded on EcOYNIM. [ PDF] (88 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error