1887

Abstract

A deep-sea manganese-oxidizing bacterium, sp. strain Mn32, showed high Mn(II) resistance (MIC 55 mM) and Mn(II)-oxidizing/removing abilities. Strain Mn32 removed Mn(II) by two pathways: (1) oxidizing soluble Mn(II) to insoluble biogenic Mn oxides – birnessite (-MnO group) and manganite (-MnOOH); (2) the biogenic Mn oxides further adsorb more Mn(II) from the culture. The generated biogenic Mn oxides surround the cell surfaces of strain Mn32 and provide a high capacity to adsorb Zn(II) and Ni(II). Mn(II) oxidation by strain Mn32 was inhibited by both sodium azide and -phenanthroline, suggesting the involvement of a metalloenzyme which was induced by Mn(II). X-ray diffraction analysis showed that the crystal structures of the biogenic Mn oxides were different from those of commercial pyrolusite (-MnO group) and fresh chemically synthesized vernadite (-MnO group). The biogenic Mn oxides generated by strain Mn32 showed two to three times higher Zn(II) and Ni(II) adsorption abilities than commercial and fresh synthetic MnO. The crystal structure and the biogenic MnO types may be important factors for the high heavy metal adsorption ability of strain Mn32. This study provides potential applications of a new marine Mn(II)-oxidizing bacterium in heavy metal bioremediation and increases our basic knowledge of microbial manganese oxidation mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024141-0
2009-06-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1989.html?itemId=/content/journal/micro/10.1099/mic.0.024141-0&mimeType=html&fmt=ahah

References

  1. Adams, L. F. & Ghiorse, W. C. ( 1985; ). Influence of manganese on growth of a sheathless strain of Leptothrix discophora. Appl Environ Microbiol 49, 556–562.
    [Google Scholar]
  2. Adams, L. F. & Ghiorse, W. C. ( 1987; ). Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169, 1279–1285.
    [Google Scholar]
  3. Arocena, J. M. & Pawluk, S. ( 1991; ). The nature and origin of nodules in podzolic soils from Alberta. Can J Soil Sci 71, 411–426.[CrossRef]
    [Google Scholar]
  4. Boogerd, F. C. & de Vrind, J. P. M. ( 1987; ). Manganese oxidation by Leptothrix discophora. J Bacteriol 169, 489–494.
    [Google Scholar]
  5. Brouwers, G. J., de Vrind, J. P. M., Corstjens, P. L., Cornelis, P., Baysse, C. & de Vrind-de Jong, E. W. ( 1999; ). cumA, a gene encoding a multicopper oxidase, is involved in Mn(II) oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65, 1762–1768.
    [Google Scholar]
  6. Corstjens, P. L. A. M., de Vrind, J. P. M., Goosen, T. & de Vrind-de Jong, E. W. ( 1997; ). Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol J 14, 91–108.[CrossRef]
    [Google Scholar]
  7. Croal, L. R., Gralnick, J. A., Malasarn, D. & Newman, D. K. ( 2004; ). The genetics of geochemistry. Annu Rev Genet 38, 175–202.[CrossRef]
    [Google Scholar]
  8. de la Torre, M. A. & Gomez-Alarcon, G. ( 1994; ). Manganese and iron oxidation by fungi isolated from building stone. Microb Ecol 27, 177–188.[CrossRef]
    [Google Scholar]
  9. Emerson, D. E., Garen, R. E. & Ghiorse, W. C. ( 1989; ). Formation of metallogenium-like structures by a manganese-oxiding fungus. Arch Microbiol 151, 223–231.[CrossRef]
    [Google Scholar]
  10. Feng, X. H., Zhan, L. M., Tan, W. F., Lin, F. & He, J. Z. ( 2005; ). The syntheses of several Mn oxide minerals and their adsorption and redox characteristics for heavy metals. Acta Petrolog Mineralog 6, 135–233 (in Chinese).
    [Google Scholar]
  11. Francis, C. A. & Tebo, B. M. ( 2001; ). cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Appl Environ Microbiol 67, 4272–4278.[CrossRef]
    [Google Scholar]
  12. Francis, C. A. & Tebo, B. M. ( 2002; ). Enzymatic manganese(II) oxidation by metabolically-dormant spores of diverse Bacillus species. Appl Environ Microbiol 68, 874–880.[CrossRef]
    [Google Scholar]
  13. Francis, C. A., Co, E. M. & Tebo, B. W. ( 2001; ). Enzymatic manganese(II) oxidation by marine α-proteobacterium. Appl Environ Microbiol 67, 4024–4029.[CrossRef]
    [Google Scholar]
  14. Francis, C. A., Casciotti, K. L. & Tebo, B. M. ( 2002; ). Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch Microbiol 178, 450–456.[CrossRef]
    [Google Scholar]
  15. Golden, D. C., Dixon, J. B. & Chen, C. C. ( 1986; ). Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clays Clay Miner 34, 511–520.[CrossRef]
    [Google Scholar]
  16. Greene, A. C. & Madgwick, J. C. ( 1991; ). Microbial formation of manganese oxides. Appl Environ Microbiol 57, 1114–1120.
    [Google Scholar]
  17. Gregory, E. & Staley, J. T. ( 1982; ). Widespread distribution of ability to oxidize manganese among freshwater bacteria. Appl Environ Microbiol 44, 509–511.
    [Google Scholar]
  18. Gregory, E., Perry, R. S. & Staley, J. T. ( 1980; ). Characterization, distribution, and significance of Metallogenium in Lake Washington. Microb Ecol 6, 125–140.[CrossRef]
    [Google Scholar]
  19. Han, R. P., Zou, W. H., Zhang, Z., Shi, J. & Yang, J. ( 2006; ). Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study. J Hazard Mater 137, 384–395.[CrossRef]
    [Google Scholar]
  20. Healy, T. W., Herring, A. P. & Fuerstenau, D. W. ( 1966; ). The effect of crystal structure on the surface properties of a series of manganese dioxides. J Colloid Interface Sci 21, 435–444.[CrossRef]
    [Google Scholar]
  21. Kim, J. B., Dixon, J. B., Chusuei, C. C. & Deng, Y. J. ( 2002; ). Oxidation of chromium(III) to (VI) by manganese oxides. Soil Sci Soc Am J 66, 306–315.[CrossRef]
    [Google Scholar]
  22. Kim, H. S., Pasten, P. A., Gaillard, J. F. & Stair, P. C. ( 2003; ). Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis. J Am Chem Soc 125, 14284–14285.[CrossRef]
    [Google Scholar]
  23. Klewicki, J. K. & Morgan, J. J. ( 1999; ). Dissolution of β-MnOOH particles by ligands: pyrophosphate, ethylenediaminetetraacetate, and citrate. Geochim Cosmochim Acta 63, 3017–3024.[CrossRef]
    [Google Scholar]
  24. Krauskopf, K. B. ( 1956; ). Factors controlling the concentrations of 13 rare metals in sea-water. Geochim Cosmochim Acta 9, 1–32.[CrossRef]
    [Google Scholar]
  25. Krumbein, W. E. & Jens, K. ( 1981; ). Biogenic rock varnishes of the Negev Desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50, 25–38.[CrossRef]
    [Google Scholar]
  26. McKenzie, R. M. ( 1981; ). The surface charge on manganese dioxides. Aust J Soil Res 19, 41–50.[CrossRef]
    [Google Scholar]
  27. Mita, N., Maruyama, A., Usui, A., Higashihara, T. & Hariya, Y. ( 1994; ). A growing deposit of hydrous manganese oxide produced by microbial mediation at a hot spring, Japan. Geochem J 28, 71–80.[CrossRef]
    [Google Scholar]
  28. Miyata, N., Tani, Y., Iwahori, K. & Soma, M. ( 2004; ). Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol Ecol 47, 101–109.[CrossRef]
    [Google Scholar]
  29. Miyata, N., Tani, Y., Sakata, M. & Iwahori, K. ( 2007; ). Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104, 1–8.[CrossRef]
    [Google Scholar]
  30. Nealson, K. H., Tebo, B. M. & Rosson, R. A. ( 1988; ). Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33, 279–318.
    [Google Scholar]
  31. Nelson, Y. M., Lion, L. W., Shuler, M. L. & Ghiorse, W. C. ( 2002; ). Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Environ Sci Technol 36, 421–425.[CrossRef]
    [Google Scholar]
  32. Okazaki, M., Sugita, T., Shimizu, M., Ohode, Y., Iwamoto, K., de Vrind-de Jong, E. W., de Vrind, J. P. M. & Corstjens, P. L. A. M. ( 1997; ). Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1. Appl Environ Microbiol 63, 4793–4799.
    [Google Scholar]
  33. Post, J. E. & Appleman, D. E. ( 1994; ). Crystal structure refinement of lithiophorite. Am Mineral 79, 370–374.
    [Google Scholar]
  34. Ridge, J. P., Lin, M., Larsen, E. I., Fegan, M., McEwan, A. G. & Sly, L. I. ( 2007; ). A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol 9, 944–953.[CrossRef]
    [Google Scholar]
  35. Rosson, R. A. & Nealson, K. H. ( 1982; ). Manganese binding and oxidation by spores of a marine bacillus. J Bacteriol 151, 1027–1034.
    [Google Scholar]
  36. Sasaki, K., Konno, H., Endo, M. & Takano, K. ( 2004; ). Removal of Mn(II) ions from aqueous neutral media by manganese-oxidizing fungus in the presence of carbon fiber. Biotechnol Bioeng 85, 489–496.[CrossRef]
    [Google Scholar]
  37. Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. ( 1996; ). Multicopper oxidases and oxygenases. Chem Rev 96, 2563–2605.[CrossRef]
    [Google Scholar]
  38. Tani, Y., Ohashi, M., Miyata, N., Seyama, H., Iwahori, K. & Soma, M. ( 2004; ). Sorption of Co(II), Ni(II), and Zn(II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21–2. J Environ Sci Health A Tox Hazard Subst Environ Eng 39, 2641–2660.[CrossRef]
    [Google Scholar]
  39. Tebo, B. M., Ghiorse, W. C., van Waasbergen, L. G., Siering, P. L. & Caspi, R. ( 1997; ). Bacterially-mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. Rev Mineral 35, 225–266.
    [Google Scholar]
  40. Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R. & Webb, S. M. ( 2004; ). Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32, 287–328.[CrossRef]
    [Google Scholar]
  41. Tian, M. J. & Shao, Z. Z. ( 2006; ). Isolation and characterization of manganese resistant bacteria from deep sea sediments. J Xiamen Uni 45, 272–276.
    [Google Scholar]
  42. Toner, B., Fakra, S., Villalobos, M., Warwick, T. & Sposito, G. ( 2005; ). Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Appl Environ Microbiol 71, 1300–1310.[CrossRef]
    [Google Scholar]
  43. van Waasbergen, L. G., Hildebrand, M. & Tebo, B. M. ( 1996; ). Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J Bacteriol 178, 3517–3530.
    [Google Scholar]
  44. Villalobos, M., Toner, B., Bargar, J. & Sposito, G. ( 2003; ). Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67, 2649–2662.[CrossRef]
    [Google Scholar]
  45. Webb, S. M., Dick, G. J., Bargar, J. R. & Tebo, B. M. ( 2005a; ). Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci U S A 102, 5558–5563.[CrossRef]
    [Google Scholar]
  46. Webb, S. M., Tebo, B. M. & Bargar, J. R. ( 2005b; ). Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp. strain SG-1. Am Mineral 90, 1342–1357.[CrossRef]
    [Google Scholar]
  47. Zhang, J., Lion, L. W., Nelson, Y. M., Shuler, M. L. & Ghiorse, W. C. ( 2002; ). Kinetics of Mn(II) oxidation by Leptothrix discophora SS-1. Geochim Cosmochim Acta 66, 773–781.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024141-0
Loading
/content/journal/micro/10.1099/mic.0.024141-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error