- Volume 151, Issue 12, 2005
Volume 151, Issue 12, 2005
- Microbiology Comment
-
- Biochemistry And Molecular Biology
-
-
-
A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia
More LessBiosynthesis of the red, tripyrrole antibiotic prodigiosin (Pig) by Serratia sp. ATCC 39006 (39006) is controlled by a complex regulatory network involving an N-acyl homoserine lactone (N-AHL) quorum-sensing system, at least two separate two-component signal transduction systems and a multitude of other regulators. In this study, a new transcriptional activator, PigT, and a physiological cue (gluconate), which are involved in an independent pathway controlling Pig biosynthesis, have been characterized. PigT, a GntR homologue, activates transcription of the pigA–O biosynthetic operon in the absence of gluconate. However, addition of gluconate to the growth medium of 39006 repressed transcription of pigA–O, via a PigT-dependent mechanism, resulting in a decrease in Pig production. Finally, expression of the pigT transcript was shown to be maximal in exponential phase, preceding the onset of Pig production. This work expands our understanding of both the physiological and genetic factors that impinge on the biosynthesis of the secondary metabolite Pig in 39006.
-
-
-
-
Four molecules of the 33 kDa haemagglutinin component of the Clostridium botulinum serotype C and D toxin complexes are required to aggregate erythrocytes
Normally, large-sized botulinum toxin complexes (L-TC) of serotype C and D are composed of a single neurotoxin, a single non-toxic non-haemagglutinin, two HA-70 molecules, four HA-33 molecules and four HA-17 molecules that assemble to form a 650 kDa L-TC. The 540 and 610 kDa TC species (designated here as L-TC2 and L-TC3, respectively) were purified in addition to the 650 kDa L-TC from the culture supernatants of serotype D strains (D-4947 and D-CB16) and serotype C strains (C-6814 and C-Yoichi). The 650 kDa L-TC from D-4947, D-CB16 and C-6814 showed haemagglutination and erythrocyte-binding activity, but their L-TC2 and L-TC3 species had only binding activity. In contrast, every TC species from C-Yoichi having the C-terminally truncated variant of HA-33 exhibited neither haemagglutination activity nor erythrocyte-binding activity. Four strain-specific HA-33/HA-17 complexes were isolated from the 650 kDa L-TC of each strain. The 650 kDa HA-hybrid L-TCs were reconstituted by various combinations of isolated HA-33/HA-17 complexes and haemagglutination-negative L-TC2 or L-TC3 from each strain. HA-hybrid 650 kDa L-TC, including at least one HA-33/HA-17 complex derived from C-Yoichi, lost haemagglutination activity, leading to the conclusion that the binding of four HA-33 molecules is required for haemagglutination activity of botulinum L-TC. The results of the modelling approach indicated that the structure of a variant C-Yoichi HA-33 molecule reveals clear deformation of the β-trefoil domain responsible for the carbohydrate recognition site.
-
-
-
Identification of genes associated with mutacin I production in Streptococcus mutans using random insertional mutagenesis
More LessStreptococcus mutans is a major pathogen implicated in dental caries. Its virulence is enhanced by its ability to produce bacteriocins, called mutacins, which inhibit the growth of other Gram-positive bacteria. The goal of this study is to use a random insertional mutagenesis approach to search for genes that are associated with mutacin I production in the virulent strain UA140. A random insertional mutagenesis library consisting of 11 000 clones was constructed and screened for a mutacin-defective phenotype. Mutacin-defective clones were isolated, and their insertion sites were determined by PCR amplification or plasmid rescue followed by sequencing. A total of twenty-five unique genes were identified. These genes can be categorized into the following functional classes: two-component sensory systems, stress responses, energy metabolism and central cellular processes. Several conserved hypothetical proteins with unknown functions were also identified. These results suggest that mutacin I production is stringently controlled by diverse and complex regulatory pathways.
-
-
-
Dimerization and DNA binding of the Salmonella enterica PhoP response regulator are phosphorylation independent
More LessIn Salmonella enterica, PhoP is the response regulator of the PhoP/PhoQ two-component regulatory system that controls the expression of various virulence factors in response to external Mg2+. Previous studies have shown that phosphorylation of a PhoP variant with a C-terminal His tag (PhoPHis) enhances dimerization and binding to target DNA. Here, the effect of phosphorylation on the oligomerization and DNA binding properties of both wild-type PhoP (PhoP) and PhoPHis are compared. Gel filtration chromatography showed that PhoP exists as a mixture of monomer and dimer regardless of its phosphorylation state. In contrast, unphosphorylated PhoPHis was mostly monomeric, whereas PhoPHis∼P existed as a mixture of monomer and dimer. By monitoring the tryptophan fluorescence of the proteins and the fluorescence of the probe 1-anilinonaphthalene-8-sulfonic acid bound to them, it was found that PhoP and PhoPHis exhibited different spectral properties. The interaction between PhoP or PhoPHis and the PhoP box of the mgtA promoter was monitored by surface plasmon resonance. Binding of PhoP to the PhoP box was barely influenced by phosphorylation. In contrast, phosphorylation of PhoPHis clearly increased the interaction of PhoPHis with target DNA. Altogether, these data show that a His tag at the C-terminus of PhoP affects its biochemical properties, most likely by affecting its conformation and/or its oligomerization state. More importantly, these results show that wild-type PhoP dimerization and interaction with target DNA are independent of phosphorylation, which is in contrast to the previously proposed model.
-
-
-
Construction and expression of an ethanol production operon in Gram-positive bacteria
More LessPyruvate decarboxylase (PDC), an enzyme central to homoethanol fermentation, catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde with release of carbon dioxide. PDC enzymes from diverse organisms have different kinetic properties, thermal stability and codon usage that are likely to offer unique advantages for the development of desirable Gram-positive biocatalysts for use in the ethanol industry. To examine this further, pdc genes from bacteria to yeast were expressed in the Gram-positive host Bacillus megaterium. The PDC activity and protein levels were determined for each strain. In addition, the levels of pdc-specific mRNA transcripts and stability of recombinant proteins were assessed. From this analysis, the pdc gene of Gram-positive Sarcina ventriculi was found to be the most advantageous for engineering high-level synthesis of PDC in a Gram-positive host. This gene was thus selected for transcriptional coupling to the alcohol dehydrogenase gene (adh) of Geobacillus stearothermophilus. The resulting Gram-positive ethanol production operon was expressed at high levels in B. megaterium. Extracts from this recombinant were shown to catalyse the production of ethanol from pyruvate.
-
-
-
Probing the domain structure of FtsZ by random truncation and insertion of GFP
More LessRandom transposon-mediated mutagenesis has been used to create truncations and insertions of green fluorescent protein (GFP), and Venus-yellow fluorescent protein (YFP), in Escherichia coli FtsZ. Sixteen unique insertions were obtained, and one of them, in the poorly conserved C-terminal spacer, was functional for cell division with the Venus-YFP insert. The insertion of enhanced GFP (eGFP) at this same site was not functional; Venus-YFP was found to be superior to eGFP in other respects too. Testing the constructs for dominant negative effects led to the following general conclusion. The N-terminal domain, aa 1–195, is an independently folding domain that can poison Z-ring function when expressed without a functional C-terminal domain. The effects were weak, requiring expression of the mutant at 3–5 times the level of wild-type FtsZ. The C-terminal domain, aa 195–383, was also independently folding, but had no activity in vivo. The differential activity of the N- and C-terminal domains suggests that FtsZ protofilament assembly is directional, with subunits adding primarily at the bottom of the protofilament. Directional assembly could occur by either a treadmilling or a dynamic instability mechanism.
-
-
-
Transcription and autoregulation of the Rv3134c-devR-devS operon of Mycobacterium tuberculosis
More LessDevR is a transcriptional regulator that mediates the genetic response of Mycobacterium tuberculosis to oxygen limitation and nitric oxide exposure. devR is co-transcribed along with devS, which encodes its cognate sensor kinase, and an upstream gene, Rv3134c. The transcriptional activity of this operon was characterized by primer extension, transcriptional fusion and electrophoretic mobility shift assays (EMSAs) under aerobic conditions. Transcription start points (Tsps) were detected upstream of both Rv3134c and devR, and the major transcript was derived from upstream of Rv3134c. Sequences with similarity to sigma factor consensus elements and to DevR-binding motifs were detected in the vicinity of the Tsps by in silico analysis. EMSAs with promoter regions and DevR protein showed that DevR binds to its own promoters in a sequence-specific manner with differing affinities. Consistent with the primer extension and EMSA data, Rv3134c promoters, and not devR promoters, were determined to be the principal promoters of this operon using reporter assays performed in Mycobacterium smegmatis and Escherichia coli. Furthermore, DevR modulated the activity of both devR and Rv3134c promoters. From these findings it is inferred that the Rv3134c-devR-devS operon is transcribed from multiple promoters and is autoregulated.
-
-
-
Pseudomonas aeruginosa PAO1 genes for 3-guanidinopropionate and 4-guanidinobutyrate utilization may be derived from a common ancestor
More LessPseudomonas aeruginosa PAO1 utilizes 3-guanidinopropionate (3-GP) and 4-guanidinobutyrate (4-GB), which differ in one methylene group only, via distinct enzymes: guanidinopropionase (EC 3.5.3.17; the gpuA product) and guanidinobutyrase (EC 3.5.3.7; the gbuA product). The authors cloned and characterized the contiguous gpuPAR genes (in that order) responsible for 3-GP utilization, and compared the deduced sequences of their putative protein products, and the potential regulatory mechanisms of gpuPA, with those of the corresponding gbu genes encoding the 4-GB catabolic system. GpuA and GpuR have similarity to GbuA (49 % identity) and GbuR (a transcription activator of gbuA; 37 % identity), respectively. GpuP resembles PA1418 (58 % identity), which is a putative membrane protein encoded by a potential gene downstream of gbuA. These features of the GpuR and GpuP sequences, and the impaired growth of gpuR and gpuP knockout mutants on 3-GP, support the notion that GpuR and GpuP direct the 3-GP-inducible expression of gpuA, and the uptake of 3-GP, respectively. Northern blots of mRNA from 3-GP-induced PAO1 cells revealed three transcripts of gpuA, gpuP, and gpuP and gpuA together, suggesting that gpuP and gpuA each have a 3-GP-responsible promoter, and that some transcription from the gpuP promoter is terminated after gpuP, or proceeds into gpuA. Knockout of gpuR abolished 3-GP-dependent synthesis of the transcripts, confirming that GpuR activates transcription from these promoters, with 3-GP as a specific co-inducer. The sequence conservation between the three functional pairs of the Gpu and Gbu proteins, and the absence of gpuAPR in closely related species, imply that the triad gpu genes have co-ordinately evolved from origins common to the gbu counterparts, to establish an independent catabolic system of 3-GP in P. aeruginosa.
-
-
-
In vivo cycling of the Escherichia coli transcription factor FNR between active and inactive states
More LessFNR proteins are transcription regulators that sense changes in oxygen availability via assembly–disassembly of [4Fe–4S] clusters. The Escherichia coli FNR protein is present in bacteria grown under aerobic and anaerobic conditions. Under aerobic conditions, FNR is isolated as an inactive monomeric apoprotein, whereas under anaerobic conditions, FNR is present as an active dimeric holoprotein containing one [4Fe–4S] cluster per subunit. It has been suggested that the active and inactive forms of FNR are interconverted in vivo, or that iron–sulphur clusters are mostly incorporated into newly synthesized FNR. Here, experiments using a thermo-inducible fnr expression plasmid showed that a model FNR-dependent promoter is activated under anaerobic conditions by FNR that was synthesized under aerobic conditions. Immunoblots suggested that FNR was more prone to degradation under aerobic compared with anaerobic conditions, and that the ClpXP protease contributes to this degradation. Nevertheless, FNR was sufficiently long lived (half-life under aerobic conditions, ∼45 min) to allow cycling between active and inactive forms. Measuring the abundance of the FNR-activated dms transcript when chloramphenicol-treated cultures were switched between aerobic and anaerobic conditions showed that it increased when cultures were switched to anaerobic conditions, and decreased when aerobic conditions were restored. In contrast, measurement of the abundance of the FNR-repressed ndh transcript under the same conditions showed that it decreased upon switching to anaerobic conditions, and then increased when aerobic conditions were restored. The abundance of the FNR- and oxygen-independent tatE transcript was unaffected by changes in oxygen availability. Thus, the simplest explanation for the observations reported here is that the FNR protein can be switched between inactive and active forms in vivo in the absence of de novo protein synthesis.
-
-
-
The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence
The manganese uptake regulator Mur of Rhizobium leguminosarum is a close homologue of the global iron regulatory protein Fur. Mur represses the sitABCD operon, which encodes a Mn2+ transport system, specifically in response to Mn2+ but not Fe2+. In previous work the authors mapped the 5′ ends of two sit operon transcripts, termed TS1 and TS2, which were co-ordinately regulated by Mn2+-Mur, but this paper now shows that only TS1 is a primary transcript. DNase I protection analyses showed that purified Mur bound, with similar affinity, to two sites in the regulatory region of sitABCD, but only when Mn2+ was present in the reaction buffer. These Mn2+-Mur-binding sites, termed MRS1 and MRS2 (Mur-responsive sequence), were closely related in sequence to each other and were separated by 16 bp, spanning the transcription initiation site TS1. The extent of the protected DNA was 34 and 31 bp for MRS1 and MRS2, respectively, which is in accord with other members of the Fur family. The DNA sequences recognized by Mn2+-Mur are wholly different from conventional Fur boxes, but some similarities to a recognition sequence for the Fur regulator from Bradyrhizobium japonicum were noted. Transcription analysis of the R. leguminosarum mur gene showed its expression to be independent of Mn2+-Mur. Thus, Mur is a sequence-specific DNA-binding protein that responds in vitro to manganese, and thus can occlude RNA polymerase access to the sitABCD promoter. Moreover, Mur recognizes a DNA sequence atypical for the Fur superfamily and, like Fur from B. japonicum, defines a new subclass of Fur-like transcriptional regulators.
-
-
-
A truncated haemoglobin implicated in oxygen metabolism by the microaerophilic food-borne pathogen Campylobacter jejuni
More LessOf the three groups of haemoglobins identified in micro-organisms (single-domain globins, flavohaemoglobins and truncated globins), the last group is the least well understood. The function of the truncated haemoglobin (Ctb) encoded by Cj0465c in the microaerophilic food-borne bacterial pathogen Campylobacter jejuni was investigated by constructing a ctb mutant and characterizing its phenotype. The effects of the ctb mutation on the kinetics of terminal oxidase function in C. jejuni were investigated using oxyleghaemoglobin and oxymyoglobin as sensitive reporters of O2 consumption. The V max of ctb mutant cells for O2, calculated using either globin, was greater than that of wild-type cells at extracellular O2 concentrations up to ∼1 μM, suggesting a role for Ctb in moderating O2 supply for reduction by high-affinity terminal oxidases. However, cells mutated in ctb were disadvantaged when grown under conditions of high aeration, as revealed by measurements of growth yields and rates in batch culture. Furthermore, the rate at which ctb mutant cells consumed O2 in an O2 electrode (10–200 μM O2) was approximately half the rate displayed by wild-type cells, reflecting a role for Ctb in respiration at physiologically relevant external O2 concentrations. However, a lack of sensitivity of the mutant to paraquat or H2O2 indicated that increased oxidative stress under such conditions was not the cause of these phenotypes. O2 affinities of cells (K m values of approximately 40 nM and 1 μM) were unaffected by mutation of either Ctb or the full-length C. jejuni globin, Cgb. Although the gene encoding Ctb was found to be upregulated by S-nitrosoglutathione (GSNO) and the NO-donating compound S-nitroso-N-acetylpenicillamine (SNAP), a ctb mutant did not display sensitivity to a number of nitrosative stress-generating compounds. The authors conclude that Ctb is involved in moderating O2 flux within C. jejuni.
-
-
-
Yersiniophage ϕR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine
Bacteriophage ϕR1-37 was isolated based on its ability to infect strain YeO3-R1, a virulence-plasmid-cured O antigen-negative derivative of Yersinia enterocolitica serotype O : 3. In this study, the phage receptor was found to be a structure in the outer core hexasaccharide of Y. enterocolitica O : 3 LPS. The phage receptor was present in the outer core of strains of many other Y. enterocolitica serotypes, but also in some Yersinia intermedia strains. Surprisingly, the receptor structure resided in the O antigen of Yersinia pseudotuberculosis O : 9. Electron microscopy demonstrated that ϕR1-37 particles have an icosahedral head of 88 nm, a short neck of 10 nm, a long contractile tail of 236 nm, and tail fibres of at least 86 nm. This implies that the phage belongs to the order Caudovirales and the family Myoviridae in the ICTV (International Committee for Taxonomy of Viruses) classification. ϕR1-37 was found to have a lytic life cycle, with eclipse and latent periods of 40 and 50 min, respectively, and a burst size of ∼80 p.f.u. per infected cell. Restriction digestions and PFGE showed that the ϕR1-37 genome was dsDNA and ∼270 kb in size. Enzymically hydrolysed DNA was subjected to HPLC-MS/MS analysis, which demonstrated that the ϕR1-37 genome is composed of DNA in which thymidine (T) is >99 % replaced by deoxyuridine (dU). The only organisms known to have similar DNA are the Bacillus subtilis-specific bacteriophages PBS1 and PBS2. N-terminal amino acid sequences of four major structural proteins did not show any similarity to (viral) protein sequences in databases, indicating that close relatives of ϕR1-37 have not yet been characterized. Genes for two of the structural proteins, p24 and p46, were identified from the partially sequenced ϕR1-37 genome.
-
-
-
Mutational analysis of the C-terminal domain of the Rhodobacter sphaeroides response regulator PrrA
More LessThe Rhodobacter sphaeroides response regulator PrrA directly activates transcription of genes necessary for energy conservation at low O2 tensions and under anaerobic conditions. It is proposed that PrrA homologues contain a C-terminal DNA-binding domain (PrrA-CTD) that lacks significant amino acid sequence similarity to those found in other response regulators. To test this hypothesis, single amino acid substitutions were created at 12 residues in the PrrA-CTD. These mutant PrrA proteins were purified and tested for the ability to be phosphorylated by the low-molecular-mass phosphate donor acetyl phosphate, to activate transcription and to bind promoter DNA. Each mutant PrrA protein accepted phosphate from 32P-labelled acetyl phosphate. At micromolar concentrations of acetyl phosphate-treated wild-type PrrA, a single 20 bp region in the PrrA-dependent cycA P2 promoter was protected from DNase I digestion. Of the mutant PrrA proteins tested, only acetyl phosphate-treated PrrA-N168A and PrrA-I177A protected cycA P2 from DNase I digestion at similar protein concentrations compared to wild-type PrrA. The use of in vitro transcription assays with the PrrA-dependent cycA P2 and puc promoters showed that acetyl phosphate-treated PrrA-N168A produced transcript levels similar to that of wild-type PrrA at comparable protein concentrations. Using concentrations of acetyl phosphate-treated PrrA that are saturating for the wild-type protein, PrrA-H170A and PrrA-I177A produced <45 % as much transcript as wild-type PrrA. Under identical conditions, the remaining mutant PrrA proteins produced little or no detectable transcripts from either promoter in vitro. Explanations are presented for why these amino acid side chains in the PrrA-CTD are important for its ability to activate transcription.
-
-
-
Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100
Acetobacter tropicalis SKU1100 produces a pellicle polysaccharide, consisting of galactose, glucose and rhamnose, which attaches to the cell surface. This strain forms two types of colony on agar plates: a rough-surfaced colony (R strain) and a mucoid smooth-surfaced colony (S strain). The R strain forms a pellicle, allowing it to float on the medium surface in static culture, while the S strain does not. The pellicle is an assemblage of cells which are tightly associated with capsular polysaccharides (CPS) on the cell surface. In this study, a gene required for pellicle formation by the R strain was investigated by transposon mutagenesis using Tn10. The resulting mutant, designated Pel−, has a smooth-surfaced colony and a defect in pellicle formation, as for the S strain. The mutant produced polysaccharide which was instead secreted into the culture medium as extracellular polysaccharide (EPS). An ORF was identified at the Tn10 insertion site, designated polE, upstream of which polABCD genes were also found. The deduced amino acid sequences of polABCD showed a high level of homology to those of rfbBACD which are involved in dTDP-rhamnose synthesis, whereas polE had a relatively low level of homology to glycosyltransferase. In this study a polB (rfbA) disruptant was also prepared, which lacked both CPS and EPS production. A plasmid harbouring the polE or polB genes could restore pellicle formation in the Pel− mutant and S strains, and in the ΔpolB mutant, respectively. Thus both polE and polB are evidently involved in pellicle formation, most likely by anchoring polysaccharide to the cell surface and through the production of dTDP-rhamnose, respectively. The Pel− and ΔpolB mutants were unable to grow in static culture and became more sensitive to acetic acid due to the loss of pellicle formation. Additionally, this study identified the mutation sites of several S strains which were spontaneously isolated from the original culture and found them to be concentrated in a sequence of 7 C residues in the coding sequence of polE, with the deletion or addition of a single C nucleotide.
-
- Biodiversity And Evolution
-
-
-
Complete and variant forms of the ‘gonococcal genetic island’ in Neisseria meningitidis
More LessComparative genome hybridization using the pan-Neisseria microarray identified genes from the gonococcal genetic island (GGI) within Neisseria meningitidis strains of serogroups W-135, H, and Z. While some of these strains contain nearly all of the genes of the GGI, there are differences in the presence of some of these genes between the strains, including between those of the same serogroup. Attempts were then made to determine the location of the GGI in these meningococci. Sequencing of Neisseria gonorrhoeae strain MS11 revealed that the GGI is a conjugative plasmid that can be chromosomally integrated at the dif sites near ung and can also be present in its circularized form. In N. meningitidis, a dif site is present in this location and also serves as the point of chromosomal integration of the GGI in this species.
-
-
-
-
Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree
Current phylogenies of the intracellular bacteria belonging to the genus Wolbachia identify six major clades (A–F), termed ‘supergroups’, but the branching order of these supergroups remains unresolved. Supergroups A, B and E include most of the wolbachiae found thus far in arthropods, while supergroups C and D include most of those found in filarial nematodes. Members of supergroup F have been found in arthropods (i.e. termites), and have previously been detected in the nematode Mansonella ozzardi, a causative agent of human filariasis. To resolve the phylogenetic positions of Wolbachia from Mansonella spp., and other novel strains from the flea Ctenocephalides felis and the filarial nematode Dipetalonema gracile, the authors generated new DNA sequences of the Wolbachia genes encoding citrate synthase (gltA), heat-shock protein 60 (groEL), and the cell division protein ftsZ. Phylogenetic analysis confirmed the designation of Wolbachia from Mansonella spp. as a member of the F supergroup. In addition, it was found that divergent lineages from Dip. gracile and Cte. felis lack any clear affiliation with known supergroups, indicating further genetic diversity within the Wolbachia genus. Finally, although the data generated did not permit clear resolution of the root of the global Wolbachia tree, the results suggest that the transfer of Wolbachia spp. from arthropods to nematodes (or vice versa) probably occurred more than once.
-
- Environmental Microbiology
-
-
-
bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC
More LessBacillus sp. JF8 is a thermophilic polychlorinated biphenyl (PCB) degrader, which utilizes biphenyl and naphthalene. A thermostable, Mn-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase, BphC_JF8, has been characterized previously. Upstream of bphC are five ORFs exhibiting low homology with, and a different gene order from, previously characterized bph genes. From the 5′ to 3′ direction the genes are: a putative regulatory gene (bphR), a hydrolase (bphD), the large and small subunits of a ring-hydroxylating dioxygenase (bphA1A2), and a cis-diol dehydrogenase (bphB). Hybridization studies indicate that the genes are located on a plasmid. Ring-hydroxylating activity of recombinant BphA1A2_JF8 towards biphenyl, PCB, naphthalene and benzene was observed in Escherichia coli cells, with complementation of non-specific ferredoxin and ferredoxin reductase by host cell proteins. PCB degradation by recombinant BphA1A2_JF8 showed that the congener specificity of the recombinant enzyme was similar to Bacillus sp. JF8. BphD_JF8, with an optimum temperature of 85 °C, exhibited a narrow substrate preference for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. The Arrhenius plot of BphD_JF8 was biphasic, with two characteristic energies of activation and a break point at 47 °C.
-
-
- Genes And Genomes
-
-
-
Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584
More LessThe biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides.
-
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)