1887

Abstract

PAO1 utilizes 3-guanidinopropionate (3-GP) and 4-guanidinobutyrate (4-GB), which differ in one methylene group only, via distinct enzymes: guanidinopropionase (EC 3.5.3.17; the product) and guanidinobutyrase (EC 3.5.3.7; the product). The authors cloned and characterized the contiguous genes (in that order) responsible for 3-GP utilization, and compared the deduced sequences of their putative protein products, and the potential regulatory mechanisms of , with those of the corresponding genes encoding the 4-GB catabolic system. GpuA and GpuR have similarity to GbuA (49 % identity) and GbuR (a transcription activator of ; 37 % identity), respectively. GpuP resembles PA1418 (58 % identity), which is a putative membrane protein encoded by a potential gene downstream of . These features of the GpuR and GpuP sequences, and the impaired growth of and knockout mutants on 3-GP, support the notion that GpuR and GpuP direct the 3-GP-inducible expression of , and the uptake of 3-GP, respectively. Northern blots of mRNA from 3-GP-induced PAO1 cells revealed three transcripts of , , and and together, suggesting that and each have a 3-GP-responsible promoter, and that some transcription from the promoter is terminated after , or proceeds into . Knockout of abolished 3-GP-dependent synthesis of the transcripts, confirming that GpuR activates transcription from these promoters, with 3-GP as a specific co-inducer. The sequence conservation between the three functional pairs of the Gpu and Gbu proteins, and the absence of in closely related species, imply that the triad genes have co-ordinately evolved from origins common to the counterparts, to establish an independent catabolic system of 3-GP in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28258-0
2005-12-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/4055.html?itemId=/content/journal/micro/10.1099/mic.0.28258-0&mimeType=html&fmt=ahah

References

  1. Chou C. S., Rodwell V. W. 1972; Metabolism of basic amino acids in Pseudomonas putida . γ -guanidinobutyrate amidinohydrolase. J Biol Chem247:4486–4490
    [Google Scholar]
  2. Comai L., Schilling-Cordaro C., Mergia A., Houck C. M. 1983; A new technique for genetic engineering of Agrobacterium Ti plasmid. Plasmid10:21–30[CrossRef]
    [Google Scholar]
  3. Cunin R., Glansdorff N., Piérard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev50:314–352
    [Google Scholar]
  4. Dodd I. B., Egan J. B. 1990; Improved detection of helix–turn–helix DNA-binding motifs in protein sequences. Nucleic Acids Res18:5019–5026[CrossRef]
    [Google Scholar]
  5. Fellay R., Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vivo insertional mutagenesis of Gram-negative bacteria. Gene52:147–154[CrossRef]
    [Google Scholar]
  6. Glansdorff N, Curtiss R.. 1996; Biosynthesis of arginine and polyamines. In Escherichia and Salmonella: Cellular and Molecular Biology . , 2nd edn. pp408–433 Edited by Neidhardt F. C., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Renzikoff W. S., Riley M., Schaechter M., Umbarger H. E. III. Washington, DC: American Society for Microbiology;
  7. Haas D., Holloway B. W., Schambock A., Leisinger T. 1977; The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa . Mol Gen Genet154:7–22[CrossRef]
    [Google Scholar]
  8. Haas D., Matsumoto H., Moretti P., Stalon V., Mercenier A. 1984; Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Mol Gen Genet154:437–444
    [Google Scholar]
  9. Haas D., Galimand M., Gamper M., Zimmerman A, Kaplan S.. 1990; Arginine network of Pseudomonas aeruginosa : specific and global controls. In Pseudomonas pp303–316 Edited by Siver S., Chakrabarty A. M., Iglewski B.. , Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Hecht G. B., Newton A. 1995; Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus . J Bacteriol177:6223–6229
    [Google Scholar]
  11. Hoang T. T., Karhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp- FRT recombination system for site-specific excision of chromosomally-located DNA sequence: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86[CrossRef]
    [Google Scholar]
  12. Holloway B. W., Römling U., Tümmler B. 1994; Genomic mapping of Pseudomonas aeruginosa PAO. Microbiology140:2907–2929[CrossRef]
    [Google Scholar]
  13. Jackowski S., Alix J. H. 1990; Cloning, sequence, and expression of the pantothenate permease ( panF ) gene of Escherichia coli . J Bacteriol172:3842–3848
    [Google Scholar]
  14. Jann A., Matsumoto H., Haas D. 1988; The fourth arginine catabolic pathway of Pseudomonas aeruginosa . J Gen Microbiol134:1043–1053
    [Google Scholar]
  15. McFall S. M., Chugani S. A., Chakrabarty A. M. 1998; Transcriptional activation of the catechol and chlorocatechol operons: variation on a theme. Gene223:257–267[CrossRef]
    [Google Scholar]
  16. Mylona P. V., Premakuma R., Pau R. N., Bishop P. E. 1996; Characteristics of orf1 and orf2 in the anfHDGK genomic region encoding nitrogenase 3 of Azotobacter vinelandii . J Bacteriol178:204–208
    [Google Scholar]
  17. Nakada Y., Itoh Y. 2002; Characterization and regulation of the gbuA gene, encoding guanidinobutyrase in the arginine dehydrogenase pathway of Pseudomonas aeruginosa PAO1. J Bacteriol184:3377–3384[CrossRef]
    [Google Scholar]
  18. Nakada Y., Itoh Y. 2003; Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N -carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology149:707–714[CrossRef]
    [Google Scholar]
  19. Nakada Y., Jiang Y., Nishijyo T., Itoh Y., Lu C.-D. 2001; Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol183:6517–6524[CrossRef]
    [Google Scholar]
  20. Nishijyo T., Haas D., Itoh Y. 2001; The CbrA–CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa . Mol Microbiol40:917–931[CrossRef]
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol47:597–626[CrossRef]
    [Google Scholar]
  23. Sekowska A., Danchin A., Risler J.-L. 2000; Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology146:1815–1828
    [Google Scholar]
  24. Stover C. V., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P. & 25 other authors. 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964[CrossRef]
    [Google Scholar]
  25. Tricot C., Piérard A., Stalon V. 1990; Comparative studies on the degradation of guanidino and ureido compounds by Pseudomonas . J Gen Microbiol136:2307–2317[CrossRef]
    [Google Scholar]
  26. Vanderbilt A. S., Gaby N. S., Rodwell V. W. 1975; Intermediates and enzymes between α -ketoarginine and γ -guanidinobutyrate in the l-arginine catabolic pathway of Pseudomonas putida . J Biol Chem250:5322–5329
    [Google Scholar]
  27. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA. Methods Enzymol153:3–11
    [Google Scholar]
  28. Yorifuji T., Sugai I. 1978; 3-Ganidinopropionate amidinohydrolase and 4-guanidinobutyrate amidinohydrolase of Pseudomonas aeruginosa strain PAO1. Agric Biol Chem42:1789–1790[CrossRef]
    [Google Scholar]
  29. Yorifuji T., Kobayashi T., Tabuchi A., Shiritani Y., Yonaha K. 1983; Distribution of amidinohydrolases among Pseudomonas and comparative studies of some purified enzymes by one-dimensional peptide mapping. Agric Biol Chem47:2825–2830[CrossRef]
    [Google Scholar]
  30. Yorifuji T., Sugai I., Matsumoto H., Tabuchi A. 1982; Characterization of 3-guanidinopropionate amidinohydrolase from Pseudomonas aeruginosa and a comparative study with 4-guanidinobutyrate amidinohydrolase from other Pseudomonas . Agric Biol Chem46:1361–1367[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28258-0
Loading
/content/journal/micro/10.1099/mic.0.28258-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error