1887

Abstract

In , PhoP is the response regulator of the PhoP/PhoQ two-component regulatory system that controls the expression of various virulence factors in response to external Mg. Previous studies have shown that phosphorylation of a PhoP variant with a C-terminal His tag (PhoP) enhances dimerization and binding to target DNA. Here, the effect of phosphorylation on the oligomerization and DNA binding properties of both wild-type PhoP (PhoP) and PhoP are compared. Gel filtration chromatography showed that PhoP exists as a mixture of monomer and dimer regardless of its phosphorylation state. In contrast, unphosphorylated PhoP was mostly monomeric, whereas PhoP∼P existed as a mixture of monomer and dimer. By monitoring the tryptophan fluorescence of the proteins and the fluorescence of the probe 1-anilinonaphthalene-8-sulfonic acid bound to them, it was found that PhoP and PhoP exhibited different spectral properties. The interaction between PhoP or PhoP and the PhoP box of the promoter was monitored by surface plasmon resonance. Binding of PhoP to the PhoP box was barely influenced by phosphorylation. In contrast, phosphorylation of PhoP clearly increased the interaction of PhoP with target DNA. Altogether, these data show that a His tag at the C-terminus of PhoP affects its biochemical properties, most likely by affecting its conformation and/or its oligomerization state. More importantly, these results show that wild-type PhoP dimerization and interaction with target DNA are independent of phosphorylation, which is in contrast to the previously proposed model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28236-0
2005-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3979.html?itemId=/content/journal/micro/10.1099/mic.0.28236-0&mimeType=html&fmt=ahah

References

  1. Aiba, H., Nakasai, F., Mizushima, S. & Mizuno, T. ( 1989; ). Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, results in stimulation of its DNA-binding ability. J Biochem 106, 5–7.
    [Google Scholar]
  2. Ames, S. K., Frankema, N. & Kenney, L. J. ( 1999; ). C-terminal DNA binding stimulates N-terminal phosphorylation of the outer membrane protein regulator OmpR from Escherichia coli. Proc Natl Acad Sci U S A 96, 11792–11797.[CrossRef]
    [Google Scholar]
  3. Buckler, D. R., Zhou, Y. & Stock, A. M. ( 2002; ). Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure 10, 153–164.[CrossRef]
    [Google Scholar]
  4. Cai, S. J. & Inouye, M. ( 2002; ). EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem 277, 24155–24161.[CrossRef]
    [Google Scholar]
  5. Castelli, M. E., Garcia Vescovi, E. & Soncini, F. C. ( 2000; ). The phosphatase activity is the target for Mg2+ regulation of the sensor protein PhoQ in Salmonella. J Biol Chem 275, 22948–22954.[CrossRef]
    [Google Scholar]
  6. Ellison, D. W. & McCleary, W. R. ( 2000; ). The unphosphorylated receiver domain of PhoB silences the activity of its output domain. J Bacteriol 182, 6592–6597.[CrossRef]
    [Google Scholar]
  7. Ernst, R. K., Guina, T. & Miller, S. I. ( 2001; ). Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3, 1327–1334.[CrossRef]
    [Google Scholar]
  8. Fiedler, U. & Weiss, V. ( 1995; ). A common switch in activation of the response regulators NtrC and PhoB: phosphorylation induces dimerization of the receiver modules. EMBO J 14, 3696–3705.
    [Google Scholar]
  9. Garcia-Vescovi, E., Soncini, F. C. & Groisman, E. A. ( 1996; ). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84, 165–174.[CrossRef]
    [Google Scholar]
  10. Groisman, E. A. ( 2001; ). The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183, 1835–1842.[CrossRef]
    [Google Scholar]
  11. Groisman, E. A., Chiao, E., Lipps, C. J. & Heffron, F. ( 1989; ). Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci U S A 86, 7077–7081.[CrossRef]
    [Google Scholar]
  12. Harlocker, S. L., Bergstrom, L. & Inouye, M. ( 1995; ). Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. J Biol Chem 270, 26849–26856.[CrossRef]
    [Google Scholar]
  13. Jeon, Y., Lee, Y. S., Han, J. S., Kim, J. B. & Hwang, D. S. ( 2001; ). Multimerization of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J Biol Chem 276, 40873–40879.[CrossRef]
    [Google Scholar]
  14. Jo, Y. L., Nara, F., Ichihara, S., Mizuno, T. & Mizushima, S. ( 1986; ). Purification and characterization of the OmpR protein, a positive regulator involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli. J Biol Chem 261, 15252–15256.
    [Google Scholar]
  15. Kenney, L. J. ( 2002; ). Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Microbiol 5, 135–141.[CrossRef]
    [Google Scholar]
  16. Kumar, A., Grimes, B., Fujita, N., Makino, K., Malloch, R. A., Hayward, R. S. & Ishihama, A. ( 1994; ). Role of the sigma70 subunit of Escherichia coli RNA polymerase in transcription activation. J Mol Biol 235, 405–413.[CrossRef]
    [Google Scholar]
  17. Lakowicz, J. R. ( 1999; ). Protein fluorescence. In Principles of Fluorescence Spectroscopy, 2nd edn, pp. 445–486. Edited by J. R. Lakowicz. New York: Kluwer Academic/Plenum.
  18. Lejona, S., Aguirre, A., Cabeza, M. L., Garcia Vescovi, E. & Soncini, F. C. ( 2003; ). Molecular characterization of the Mg2+-responsive PhoP-PhoQ regulon in Salmonella enterica. J Bacteriol 185, 6287–6294.[CrossRef]
    [Google Scholar]
  19. Lejona, S., Castelli, M. E., Cabeza, M. L., Kenney, L. J., Garcia Vescovi, E. & Soncini, F. C. ( 2004; ). PhoP can activate its target genes in a PhoQ-independent manner. J Bacteriol 186, 2476–2480.[CrossRef]
    [Google Scholar]
  20. Liu, W. & Hulett, F. M. ( 1997; ). Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter. J Bacteriol 179, 6302–6310.
    [Google Scholar]
  21. Makino, K., Shinagawa, H., Amemura, M., Kawamoto, T., Yamada, M. & Nakata, A. ( 1989; ). Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 210, 551–559.[CrossRef]
    [Google Scholar]
  22. Makino, K., Amemura, M., Kim, S. K., Nakata, A. & Shinagawa, H. ( 1993; ). Role of the σ 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Genes Dev 7, 149–160.[CrossRef]
    [Google Scholar]
  23. McCleary, W. R. ( 1996; ). The activation of PhoB by acetylphosphate. Mol Microbiol 20, 1155–1163.[CrossRef]
    [Google Scholar]
  24. Minagawa, S., Ogasawara, H., Kato, A., Yamamoto, K., Eguchi, Y., Oshima, T., Mori, H., Ishihama, A. & Utsumi, R. ( 2003; ). Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J Bacteriol 185, 3696–3702.[CrossRef]
    [Google Scholar]
  25. Montagne, M., Martel, A. & Le Moual, H. ( 2001; ). Characterization of the catalytic activities of the PhoQ histidine protein kinase of Salmonella enterica serovar Typhimurium. J Bacteriol 183, 1787–1791.[CrossRef]
    [Google Scholar]
  26. Prágai, Z., Allenby, N. E., O'Connor, N., Dubrac, S., Rapoport, G., Msadek, T. & Harwood, C. R. ( 2004; ). Transcriptional regulation of the phoPR operon in Bacillus subtilis. J Bacteriol 186, 1182–1190.[CrossRef]
    [Google Scholar]
  27. Sanowar, S., Martel, A. & Le Moual, H. ( 2003; ). Mutational analysis of the residue at position 48 in the Salmonella enterica serovar Typhimurium PhoQ sensor kinase. J Bacteriol 185, 1935–1941.[CrossRef]
    [Google Scholar]
  28. Slauch, J. M., Russo, F. D. & Silhavy, T. J. ( 1991; ). Suppressor mutations in rpoA suggest that OmpR controls transcription by direct interaction with the α subunit of RNA polymerase. J Bacteriol 173, 7501–7510.
    [Google Scholar]
  29. Stock, A. M. & West, A. H. ( 2003; ). Response regulator proteins and their interactions with histidine protein kinases. In Histidine Kinases in Signal Transduction, pp. 237–271. Edited by M. Inouye & R. Dutta. New York: Academic Press.
  30. Stock, A. M., Robinson, V. L. & Goudreau, P. N. ( 2000; ). Two-component signal transduction. Annu Rev Biochem 69, 183–215.[CrossRef]
    [Google Scholar]
  31. Stock, J. B., Ninfa, A. J. & Stock, A. M. ( 1989; ). Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53, 450–490.
    [Google Scholar]
  32. Stryer, L. ( 1965; ). The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol 13, 482–495.[CrossRef]
    [Google Scholar]
  33. Yamamoto, K., Ogasawara, H., Fujita, N., Utsumi, R. & Ishihama, A. ( 2002; ). Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability. Mol Microbiol 45, 423–438.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28236-0
Loading
/content/journal/micro/10.1099/mic.0.28236-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error