1887

Abstract

Normally, large-sized botulinum toxin complexes (L-TC) of serotype C and D are composed of a single neurotoxin, a single non-toxic non-haemagglutinin, two HA-70 molecules, four HA-33 molecules and four HA-17 molecules that assemble to form a 650 kDa L-TC. The 540 and 610 kDa TC species (designated here as L-TC and L-TC, respectively) were purified in addition to the 650 kDa L-TC from the culture supernatants of serotype D strains (D-4947 and D-CB16) and serotype C strains (C-6814 and C-Yoichi). The 650 kDa L-TC from D-4947, D-CB16 and C-6814 showed haemagglutination and erythrocyte-binding activity, but their L-TC and L-TC species had only binding activity. In contrast, every TC species from C-Yoichi having the C-terminally truncated variant of HA-33 exhibited neither haemagglutination activity nor erythrocyte-binding activity. Four strain-specific HA-33/HA-17 complexes were isolated from the 650 kDa L-TC of each strain. The 650 kDa HA-hybrid L-TCs were reconstituted by various combinations of isolated HA-33/HA-17 complexes and haemagglutination-negative L-TC or L-TC from each strain. HA-hybrid 650 kDa L-TC, including at least one HA-33/HA-17 complex derived from C-Yoichi, lost haemagglutination activity, leading to the conclusion that the binding of four HA-33 molecules is required for haemagglutination activity of botulinum L-TC. The results of the modelling approach indicated that the structure of a variant C-Yoichi HA-33 molecule reveals clear deformation of the -trefoil domain responsible for the carbohydrate recognition site.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28323-0
2005-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3847.html?itemId=/content/journal/micro/10.1099/mic.0.28323-0&mimeType=html&fmt=ahah

References

  1. Arndt J. W., Gu J., Jaroszewski L., Schwarzenbacher R., Hanson M. A., Lebeda F. J., Stevens R. C. 2005; The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. J Mol Biol 346:1083–1093 [CrossRef]
    [Google Scholar]
  2. Bateman A., Birney E., Durbin R., Eddy S. R., Howe K. L., Sonnhammer E. L. 2000; The Pfam protein families database. Nucleic Acids Res 28:263–266 [CrossRef]
    [Google Scholar]
  3. Davis B. J. 1964; Method and application to human serum proteins. Ann N Y Acad Sci 121:404–427
    [Google Scholar]
  4. Fu F. N., Sharma S. K., Singh B. R. 1998; A protease-resistant novel hemagglutinin purified from type A Clostridium botulinum . J Protein Chem 17:53–60 [CrossRef]
    [Google Scholar]
  5. Fujinaga Y., Inoue K., Shimazaki S. 8 other authors 1994; Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem Biophys Res Commun 205:1291–1298 [CrossRef]
    [Google Scholar]
  6. Fujinaga Y., Inoue K., Watanabe S., Yokota K., Hirai Y., Nagamachi E., Oguma K. 1997; The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143:3841–3847 [CrossRef]
    [Google Scholar]
  7. Fujinaga Y., Inoue K., Nomura T., Sasaki J., Marvaud J. C., Popoff M. R., Kozaki S., Oguma K. 2000; Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467:179–183 [CrossRef]
    [Google Scholar]
  8. Fujinaga Y., Inoue K., Watarai S. & 10 other authors; 2004; Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes. Microbiology 150:1529–1538 [CrossRef]
    [Google Scholar]
  9. Guex N., Peitsch M. C. 1997; SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723 [CrossRef]
    [Google Scholar]
  10. Hasegawa K., Watanabe T., Sato H. & 10 other authors; 2004; Characterization of toxin complex produced by a unique strain of Clostridium botulinum serotype D 4947. Protein J 23:371–378 [CrossRef]
    [Google Scholar]
  11. Hauser D., Eklund M. W., Boquet P., Popoff M. R. 1994; Organization of the botulinum neurotoxin C1 gene and its associated non-toxic protein genes in Clostridium botulinum C 468. Mol Gen Genet 243:631–640
    [Google Scholar]
  12. Hazes B. 1996; The (QXW)3 domain: a flexible lectin scaffold. Protein Sci 5:1490–1501 [CrossRef]
    [Google Scholar]
  13. Inoue K., Fujinaga Y., Watanabe T., Ohyama T., Takeshi K., Moriishi K., Nakajima H., Inoue K., Oguma K. 1996; Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 64:1589–1594
    [Google Scholar]
  14. Inoue K., Fujinaga Y., Honke K. 7 other authors 1999; Characterization of haemagglutinin activity of Clostridium botulinum type C and D 16S toxins, and one subcomponent of haemagglutinin (HA1. Microbiology 145:2533–2542
    [Google Scholar]
  15. Inoue K., Sobhany M., Transue T. R., Oguma K., Pedersen L. C., Negishi M. 2003; Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum . Microbiology 149:3361–3370 [CrossRef]
    [Google Scholar]
  16. Kouguchi H., Watanabe T., Sagane Y., Ohyama T. 2001; Characterization and reconstitution of functional hemagglutinin of the Clostridium botulinum type C progenitor toxin. Eur J Biochem 268:4019–4026 [CrossRef]
    [Google Scholar]
  17. Kouguchi H., Watanabe T., Sagane Y., Sunagawa H., Ohyama T. 2002; In vitro reconstitution of the Clostridium botulinum type D progenitor toxin. J Biol Chem 277:2650–2656 [CrossRef]
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  19. Li L., Singh B. R. 1999; Structure–function relationship of clostridial neurotoxins. J Toxicol Toxin Rev 18:95–112 [CrossRef]
    [Google Scholar]
  20. Lotan R., Siegelman H. W., Lis H., Sharon N. 1974; Subunit structure of soybean agglutinin. J Biol Chem 249:1219–1224
    [Google Scholar]
  21. Manavalan P., Johnson W. C. Jr 1987; Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167:76–85 [CrossRef]
    [Google Scholar]
  22. Mancheno J. M., Tateno H., Goldstein I. J., Martinez-Ripoll M., Hermoso J. A. 2005; Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J Biol Chem 280:17251–17259 [CrossRef]
    [Google Scholar]
  23. McKenzie G. H., Sawyer W. H. 1973; The binding properties of dimeric and tetrameric concanavalin A. Binding of ligands to noninteracting macromolecular acceptors. J Biol Chem 248:549–556
    [Google Scholar]
  24. Montecucco C., Schiavo G. 1993; Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends Biochem Sci 18:324–327 [CrossRef]
    [Google Scholar]
  25. Mutoh S., Kouguchi H., Sagane Y., Suzuki T., Hasegawa K., Watanabe T., Ohyama T. 2003; Complete subunit structure of the Clostridium botulinum type D toxin complex via intermediate assembly with nontoxic components. Biochemistry 42:10991–10997 [CrossRef]
    [Google Scholar]
  26. Nakajima H., Inoue K., Ikeda T. 7 other authors 1998; Molecular composition of the 16S toxin produced by a C lostridium botulinum type D strain, 1873. Microbiol Immunol 42:599–605 [CrossRef]
    [Google Scholar]
  27. Oguma K., Inoue K., Fujinaga Y., Yokota K., Watanabe T., Ohyama T., Takeshi K., Inoue K. 1999; Structure and function of Clostridium botulinum progenitor toxin. J Toxicol Toxin Rev 18:17–34 [CrossRef]
    [Google Scholar]
  28. Ohyama T., Watanabe T., Fujinaga Y., Inoue K., Sunagawa H., Fujii N., Inoue K., Oguma K. 1995; Characterization of nontoxic-nonhemagglutinin component of the two types of progenitor toxin (M and L) produced by Clostridium botulinum type D CB-16. Microbiol Immunol 39:457–465 [CrossRef]
    [Google Scholar]
  29. Rutenber E., Ready M., Robertus J. D. 1987; Structure and evolution of ricin B chain. Nature 326:624–626 [CrossRef]
    [Google Scholar]
  30. Sagane Y., Watanabe T., Kouguchi H., Sunagawa H., Inoue K., Fujinaga Y., Oguma K., Ohyama T. 1999; Dichain structure of botulinum neurotoxin: identification of cleavage sites in types C, D, and F neurotoxin molecules. J Protein Chem 18:885–892 [CrossRef]
    [Google Scholar]
  31. Sagane Y., Kouguchi H., Watanabe T., Sunagawa H., Inoue K., Fujinaga Y., Oguma K., Ohyama T. 2001; Role of C-terminal region of HA-33 component of botulinum toxin in hemagglutination. Biochem Biophys Res Commun 288:650–657 [CrossRef]
    [Google Scholar]
  32. Sagane Y., Watanabe T., Kouguchi H., Sunagawa H., Obata S., Oguma K., Ohyama T. 2002; Spontaneous nicking in the nontoxic-nonhemagglutinin component of the Clostridium botulinum toxin complex. Biochem Biophys Res Commun 292:434–440 [CrossRef]
    [Google Scholar]
  33. Sakaguchi G. 1982; Clostridium botulinum toxins. Pharmacol Ther 19:165–194 [CrossRef]
    [Google Scholar]
  34. Sakaguchi G., Kozaki S., Ohishi I. 1984; Structure and function of botulinum toxins. In Bacterial Protein Toxins pp 435–443 Edited by Alouf J. E., Fehrenbach F. J., Freer J. H., Jeljaszewicz J. London: Academic Press;
    [Google Scholar]
  35. Sharma S. K., Fu F. N., Singh B. R. 1999; Molecular properties of a hemagglutinin purified from type A Clostridium botulinum . J Protein Chem 18:29–38 [CrossRef]
    [Google Scholar]
  36. Suzuki T., Watanabe T., Mutoh S., Hasegawa K., Kouguchi H., Sagane Y., Fujinaga Y., Oguma K., Ohyama T. 2005; Characterization of the interaction between subunits of the botulinum toxin complex produced by serotype D through tryptic susceptibility of the isolated components and complex forms. Microbiology 151:1475–1483 [CrossRef]
    [Google Scholar]
  37. Transue T. R., Smith A. K., Mo H., Goldstein I. J., Saper M. A. 1997; Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat Struct Biol 4:779–783 [CrossRef]
    [Google Scholar]
  38. Watanabe T., Sagane Y., Kouguchi H., Sunagawa H., Inoue K., Fujinaga Y., Oguma K., Ohyama T. 1999; Molecular composition of progenitor toxin produced by Clostridium botulinum type C strain 6813. J Protein Chem 18:753–760 [CrossRef]
    [Google Scholar]
  39. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373 [CrossRef]
    [Google Scholar]
  40. Yang J. T., Wu C. S., Martinez H. M. 1986; Calculation of protein conformation from circular dichroism. Methods Enzymol 130:208–269
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28323-0
Loading
/content/journal/micro/10.1099/mic.0.28323-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error