1887

Abstract

Normally, large-sized botulinum toxin complexes (L-TC) of serotype C and D are composed of a single neurotoxin, a single non-toxic non-haemagglutinin, two HA-70 molecules, four HA-33 molecules and four HA-17 molecules that assemble to form a 650 kDa L-TC. The 540 and 610 kDa TC species (designated here as L-TC and L-TC, respectively) were purified in addition to the 650 kDa L-TC from the culture supernatants of serotype D strains (D-4947 and D-CB16) and serotype C strains (C-6814 and C-Yoichi). The 650 kDa L-TC from D-4947, D-CB16 and C-6814 showed haemagglutination and erythrocyte-binding activity, but their L-TC and L-TC species had only binding activity. In contrast, every TC species from C-Yoichi having the C-terminally truncated variant of HA-33 exhibited neither haemagglutination activity nor erythrocyte-binding activity. Four strain-specific HA-33/HA-17 complexes were isolated from the 650 kDa L-TC of each strain. The 650 kDa HA-hybrid L-TCs were reconstituted by various combinations of isolated HA-33/HA-17 complexes and haemagglutination-negative L-TC or L-TC from each strain. HA-hybrid 650 kDa L-TC, including at least one HA-33/HA-17 complex derived from C-Yoichi, lost haemagglutination activity, leading to the conclusion that the binding of four HA-33 molecules is required for haemagglutination activity of botulinum L-TC. The results of the modelling approach indicated that the structure of a variant C-Yoichi HA-33 molecule reveals clear deformation of the -trefoil domain responsible for the carbohydrate recognition site.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28323-0
2005-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3847.html?itemId=/content/journal/micro/10.1099/mic.0.28323-0&mimeType=html&fmt=ahah

References

  1. Arndt, J. W., Gu, J., Jaroszewski, L., Schwarzenbacher, R., Hanson, M. A., Lebeda, F. J. & Stevens, R. C. ( 2005; ). The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. J Mol Biol 346, 1083–1093.[CrossRef]
    [Google Scholar]
  2. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L. & Sonnhammer, E. L. ( 2000; ). The Pfam protein families database. Nucleic Acids Res 28, 263–266.[CrossRef]
    [Google Scholar]
  3. Davis, B. J. ( 1964; ). Method and application to human serum proteins. Ann N Y Acad Sci 121, 404–427.
    [Google Scholar]
  4. Fu, F. N., Sharma, S. K. & Singh, B. R. ( 1998; ). A protease-resistant novel hemagglutinin purified from type A Clostridium botulinum. J Protein Chem 17, 53–60.[CrossRef]
    [Google Scholar]
  5. Fujinaga, Y., Inoue, K., Shimazaki, S. & 8 other authors ( 1994; ). Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem Biophys Res Commun 205, 1291–1298.[CrossRef]
    [Google Scholar]
  6. Fujinaga, Y., Inoue, K., Watanabe, S., Yokota, K., Hirai, Y., Nagamachi, E. & Oguma, K. ( 1997; ). The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143, 3841–3847.[CrossRef]
    [Google Scholar]
  7. Fujinaga, Y., Inoue, K., Nomura, T., Sasaki, J., Marvaud, J. C., Popoff, M. R., Kozaki, S. & Oguma, K. ( 2000; ). Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467, 179–183.[CrossRef]
    [Google Scholar]
  8. Fujinaga, Y., Inoue, K., Watarai, S. & 10 other authors ( 2004; ). Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes. Microbiology 150, 1529–1538.[CrossRef]
    [Google Scholar]
  9. Guex, N. & Peitsch, M. C. ( 1997; ). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.[CrossRef]
    [Google Scholar]
  10. Hasegawa, K., Watanabe, T., Sato, H. & 10 other authors ( 2004; ). Characterization of toxin complex produced by a unique strain of Clostridium botulinum serotype D 4947. Protein J 23, 371–378.[CrossRef]
    [Google Scholar]
  11. Hauser, D., Eklund, M. W., Boquet, P. & Popoff, M. R. ( 1994; ). Organization of the botulinum neurotoxin C1 gene and its associated non-toxic protein genes in Clostridium botulinum C 468. Mol Gen Genet 243, 631–640.
    [Google Scholar]
  12. Hazes, B. ( 1996; ). The (QXW)3 domain: a flexible lectin scaffold. Protein Sci 5, 1490–1501.[CrossRef]
    [Google Scholar]
  13. Inoue, K., Fujinaga, Y., Watanabe, T., Ohyama, T., Takeshi, K., Moriishi, K., Nakajima, H., Inoue, K. & Oguma, K. ( 1996; ). Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 64, 1589–1594.
    [Google Scholar]
  14. Inoue, K., Fujinaga, Y., Honke, K. & 7 other authors ( 1999; ). Characterization of haemagglutinin activity of Clostridium botulinum type C and D 16S toxins, and one subcomponent of haemagglutinin (HA1). Microbiology 145, 2533–2542.
    [Google Scholar]
  15. Inoue, K., Sobhany, M., Transue, T. R., Oguma, K., Pedersen, L. C. & Negishi, M. ( 2003; ). Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum. Microbiology 149, 3361–3370.[CrossRef]
    [Google Scholar]
  16. Kouguchi, H., Watanabe, T., Sagane, Y. & Ohyama, T. ( 2001; ). Characterization and reconstitution of functional hemagglutinin of the Clostridium botulinum type C progenitor toxin. Eur J Biochem 268, 4019–4026.[CrossRef]
    [Google Scholar]
  17. Kouguchi, H., Watanabe, T., Sagane, Y., Sunagawa, H. & Ohyama, T. ( 2002; ). In vitro reconstitution of the Clostridium botulinum type D progenitor toxin. J Biol Chem 277, 2650–2656.[CrossRef]
    [Google Scholar]
  18. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  19. Li, L. & Singh, B. R. ( 1999; ). Structure–function relationship of clostridial neurotoxins. J Toxicol Toxin Rev 18, 95–112.[CrossRef]
    [Google Scholar]
  20. Lotan, R., Siegelman, H. W., Lis, H. & Sharon, N. ( 1974; ). Subunit structure of soybean agglutinin. J Biol Chem 249, 1219–1224.
    [Google Scholar]
  21. Manavalan, P. & Johnson, W. C., Jr ( 1987; ). Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167, 76–85.[CrossRef]
    [Google Scholar]
  22. Mancheno, J. M., Tateno, H., Goldstein, I. J., Martinez-Ripoll, M. & Hermoso, J. A. ( 2005; ). Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J Biol Chem 280, 17251–17259.[CrossRef]
    [Google Scholar]
  23. McKenzie, G. H. & Sawyer, W. H. ( 1973; ). The binding properties of dimeric and tetrameric concanavalin A. Binding of ligands to noninteracting macromolecular acceptors. J Biol Chem 248, 549–556.
    [Google Scholar]
  24. Montecucco, C. & Schiavo, G. ( 1993; ). Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends Biochem Sci 18, 324–327.[CrossRef]
    [Google Scholar]
  25. Mutoh, S., Kouguchi, H., Sagane, Y., Suzuki, T., Hasegawa, K., Watanabe, T. & Ohyama, T. ( 2003; ). Complete subunit structure of the Clostridium botulinum type D toxin complex via intermediate assembly with nontoxic components. Biochemistry 42, 10991–10997.[CrossRef]
    [Google Scholar]
  26. Nakajima, H., Inoue, K., Ikeda, T. & 7 other authors ( 1998; ). Molecular composition of the 16S toxin produced by a Clostridium botulinum type D strain, 1873. Microbiol Immunol 42, 599–605.[CrossRef]
    [Google Scholar]
  27. Oguma, K., Inoue, K., Fujinaga, Y., Yokota, K., Watanabe, T., Ohyama, T., Takeshi, K. & Inoue, K. ( 1999; ). Structure and function of Clostridium botulinum progenitor toxin. J Toxicol Toxin Rev 18, 17–34.[CrossRef]
    [Google Scholar]
  28. Ohyama, T., Watanabe, T., Fujinaga, Y., Inoue, K., Sunagawa, H., Fujii, N., Inoue, K. & Oguma, K. ( 1995; ). Characterization of nontoxic-nonhemagglutinin component of the two types of progenitor toxin (M and L) produced by Clostridium botulinum type D CB-16. Microbiol Immunol 39, 457–465.[CrossRef]
    [Google Scholar]
  29. Rutenber, E., Ready, M. & Robertus, J. D. ( 1987; ). Structure and evolution of ricin B chain. Nature 326, 624–626.[CrossRef]
    [Google Scholar]
  30. Sagane, Y., Watanabe, T., Kouguchi, H., Sunagawa, H., Inoue, K., Fujinaga, Y., Oguma, K. & Ohyama, T. ( 1999; ). Dichain structure of botulinum neurotoxin: identification of cleavage sites in types C, D, and F neurotoxin molecules. J Protein Chem 18, 885–892.[CrossRef]
    [Google Scholar]
  31. Sagane, Y., Kouguchi, H., Watanabe, T., Sunagawa, H., Inoue, K., Fujinaga, Y., Oguma, K. & Ohyama, T. ( 2001; ). Role of C-terminal region of HA-33 component of botulinum toxin in hemagglutination. Biochem Biophys Res Commun 288, 650–657.[CrossRef]
    [Google Scholar]
  32. Sagane, Y., Watanabe, T., Kouguchi, H., Sunagawa, H., Obata, S., Oguma, K. & Ohyama, T. ( 2002; ). Spontaneous nicking in the nontoxic-nonhemagglutinin component of the Clostridium botulinum toxin complex. Biochem Biophys Res Commun 292, 434–440.[CrossRef]
    [Google Scholar]
  33. Sakaguchi, G. ( 1982; ). Clostridium botulinum toxins. Pharmacol Ther 19, 165–194.[CrossRef]
    [Google Scholar]
  34. Sakaguchi, G., Kozaki, S. & Ohishi, I. ( 1984; ). Structure and function of botulinum toxins. In Bacterial Protein Toxins, pp. 435–443. Edited by J. E. Alouf, F. J. Fehrenbach, J. H. Freer & J. Jeljaszewicz. London: Academic Press.
  35. Sharma, S. K., Fu, F. N. & Singh, B. R. ( 1999; ). Molecular properties of a hemagglutinin purified from type A Clostridium botulinum. J Protein Chem 18, 29–38.[CrossRef]
    [Google Scholar]
  36. Suzuki, T., Watanabe, T., Mutoh, S., Hasegawa, K., Kouguchi, H., Sagane, Y., Fujinaga, Y., Oguma, K. & Ohyama, T. ( 2005; ). Characterization of the interaction between subunits of the botulinum toxin complex produced by serotype D through tryptic susceptibility of the isolated components and complex forms. Microbiology 151, 1475–1483.[CrossRef]
    [Google Scholar]
  37. Transue, T. R., Smith, A. K., Mo, H., Goldstein, I. J. & Saper, M. A. ( 1997; ). Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat Struct Biol 4, 779–783.[CrossRef]
    [Google Scholar]
  38. Watanabe, T., Sagane, Y., Kouguchi, H., Sunagawa, H., Inoue, K., Fujinaga, Y., Oguma, K. & Ohyama, T. ( 1999; ). Molecular composition of progenitor toxin produced by Clostridium botulinum type C strain 6813. J Protein Chem 18, 753–760.[CrossRef]
    [Google Scholar]
  39. Wilson, I. A., Skehel, J. J. & Wiley, D. C. ( 1981; ). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373.[CrossRef]
    [Google Scholar]
  40. Yang, J. T., Wu, C. S. & Martinez, H. M. ( 1986; ). Calculation of protein conformation from circular dichroism. Methods Enzymol 130, 208–269.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28323-0
Loading
/content/journal/micro/10.1099/mic.0.28323-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error