1887

Abstract

The response regulator PrrA directly activates transcription of genes necessary for energy conservation at low O tensions and under anaerobic conditions. It is proposed that PrrA homologues contain a C-terminal DNA-binding domain (PrrA-CTD) that lacks significant amino acid sequence similarity to those found in other response regulators. To test this hypothesis, single amino acid substitutions were created at 12 residues in the PrrA-CTD. These mutant PrrA proteins were purified and tested for the ability to be phosphorylated by the low-molecular-mass phosphate donor acetyl phosphate, to activate transcription and to bind promoter DNA. Each mutant PrrA protein accepted phosphate from P-labelled acetyl phosphate. At micromolar concentrations of acetyl phosphate-treated wild-type PrrA, a single 20 bp region in the PrrA-dependent P2 promoter was protected from DNase I digestion. Of the mutant PrrA proteins tested, only acetyl phosphate-treated PrrA-N168A and PrrA-I177A protected P2 from DNase I digestion at similar protein concentrations compared to wild-type PrrA. The use of transcription assays with the PrrA-dependent P2 and promoters showed that acetyl phosphate-treated PrrA-N168A produced transcript levels similar to that of wild-type PrrA at comparable protein concentrations. Using concentrations of acetyl phosphate-treated PrrA that are saturating for the wild-type protein, PrrA-H170A and PrrA-I177A produced <45 % as much transcript as wild-type PrrA. Under identical conditions, the remaining mutant PrrA proteins produced little or no detectable transcripts from either promoter . Explanations are presented for why these amino acid side chains in the PrrA-CTD are important for its ability to activate transcription.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28300-0
2005-12-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/4103.html?itemId=/content/journal/micro/10.1099/mic.0.28300-0&mimeType=html&fmt=ahah

References

  1. Anthony J., Green H., Donohue T. J. 2003; Rhodobacter sphaeroides RNA polymerase and its sigma factors. Methods Enzymol370:54–65
    [Google Scholar]
  2. Bauer E., Kaspar T., Fischer H. M., Hennecke H. 1998; Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR. J Bacteriol180:3853–3863
    [Google Scholar]
  3. Bauer C. E., Elsen S., Bird T. H. 1999; Mechanisms for redox control of gene expression. Annu Rev Microbiol53:495–523[CrossRef]
    [Google Scholar]
  4. Bird T. H., Du S., Bauer C. E. 1999; Autophosphorylation, phosphotransfer, and DNA-binding properties of the RegB/RegA two-component regulatory system in Rhodobacter capsulatus . J Biol Chem274:16343–16348[CrossRef]
    [Google Scholar]
  5. Bowman W. C., Du S., Bauer C. E., Kranz R. G. 1999; In vitro activation and repression of photosynthesis gene transcription in Rhodobacter capsulatus . Mol Microbiol33:429–437[CrossRef]
    [Google Scholar]
  6. Brennan R. G., Matthews B. W. 1989; The helix-turn-helix DNA binding motif. J Biol Chem264:1903–1906
    [Google Scholar]
  7. Comolli J. C., Donohue T. J. 2002; Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide-insensitive terminal oxidase, CioAB. Mol Microbiol45:755–768[CrossRef]
    [Google Scholar]
  8. Comolli J., Carl A., Hall C., Donohue T. J. 2002; Transcriptional activation of the Rhodobacter sphaeroides cytochrome c 2 gene P2 promoter by the response regulator PrrA. J Bacteriol184:390–399[CrossRef]
    [Google Scholar]
  9. Du S., Bird T. H., Bauer C. E. 1998; DNA binding characteristics of RegA. A constitutively active anaerobic activator of photosynthesis gene expression in Rhodobacter capsulatus . J Biol Chem273:18509–18513[CrossRef]
    [Google Scholar]
  10. Dubbs J. M., Bird T. H., Bauer C. E., Tabita F. R. 2000; Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbI promoter-operator region. J Biol Chem275:19224–19230[CrossRef]
    [Google Scholar]
  11. Elsen S., Swem L. R., Swem D. L., Bauer C. E. 2004; RegB/RegA, a highly conserved redox-responding global regulatory system. Microbiol Mol Biol Rev68:263–279[CrossRef]
    [Google Scholar]
  12. Eraso J. M., Kaplan S. 1994; prrA , a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides . J Bacteriol176:32–43
    [Google Scholar]
  13. Eraso J. M., Kaplan S. 1995; Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides : a mutant histidine kinase. J Bacteriol177:2695–2706
    [Google Scholar]
  14. Eraso J. M., Kaplan S. 1996; Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2 4 1. J Bacteriol178:7037–7046
    [Google Scholar]
  15. Eraso J. M., Kaplan S. 2000; From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2 4 1. Biochemistry39:2052–2062[CrossRef]
    [Google Scholar]
  16. Hakenback R., Stock J. B. 1996; Analysis of two-component signal transduction systems involved in transcriptional regulation. Methods Enzymol273:281–300
    [Google Scholar]
  17. Joshi H. M., Tabita F. R. 1996; A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci U S A93:14515–14520[CrossRef]
    [Google Scholar]
  18. Karls R. K., Wolf J. R., Donohue T. J. 1999; Activation of the cycA P2 promoter for the Rhodobacter sphaeroides cytochrome c 2 gene by the photosynthesis response regulator. Mol Microbiol34:822–835[CrossRef]
    [Google Scholar]
  19. Kenney L. J. 2002; Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Microbiol5:135–141[CrossRef]
    [Google Scholar]
  20. Laguri C., Phillips-Jones M. K., Williamson M. P. 2003; Solution structure and DNA binding of the effector domain from the global regulator PrrA (RegA) from Rhodobacter sphaeroides : insights into DNA binding specificity. Nucleic Acids Res31:6778–6787[CrossRef]
    [Google Scholar]
  21. Lee J. K., Kaplan S. 1992; cis -acting regulatory elements involved in oxygen and light control of puc operon transcription in Rhodobacter sphaeroides . J Bacteriol174:1146–1157
    [Google Scholar]
  22. McCleary W. R., Stock J. B. 1994; Acetyl phosphate and the activation of two-component response regulators. J Biol Chem269:31567–31572
    [Google Scholar]
  23. Newlands J. T., Ross W., Gosink K. K., Gourse R. L. 1991; Factor-independent activation of Escherichia coli rRNA transcription. II. Characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. J Mol Biol220:569–583[CrossRef]
    [Google Scholar]
  24. Oh J. I., Kaplan S. 2000; Redox signaling: globalization of gene expression. EMBO J19:4237–4247[CrossRef]
    [Google Scholar]
  25. Oh J. I., Kaplan S. 2001; Generalized approach to the regulation and integration of gene expression. Mol Microbiol39:1116–1123[CrossRef]
    [Google Scholar]
  26. Oh J. I., Ko I. J., Kaplan S. 2004; Reconstitution of the Rhodobacter sphaeroides cbb 3-PrrBA signal transduction pathway in vitro . Biochemistry43:7915–7923[CrossRef]
    [Google Scholar]
  27. Pan C., Feng J., Finkel S., Landgraf R., Sigman D., Johnson R. 1994; Structure of the Escherichia coli Fis-DNA complex probed by protein conjugated with 1,10-phenanthroline copper(I) complex. Proc Natl Acad Sci U S A91:1721–1725[CrossRef]
    [Google Scholar]
  28. Pan C. Q., Finkel S. E., Cramton S. E., Feng J.-A., Sigman D. S., Johnson R. C. 1996; Variable structures of Fis-DNA complexes determined by flanking DNA-protein contacts. J Mol Biol264:675–695[CrossRef]
    [Google Scholar]
  29. Patschkowski T., Bates D. M., Kiley P. J. 2000; Mechanisms for sensing and responding to oxygen deprivation. In Bacterial Stress Responses pp61–78 Edited by Hengge-Aronis G. S. A. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Potter C. A., Ward A., Laguri C., Williamson M. P., Henderson P. J. F., Phillips-Jones M. K. 2002; Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides . J Mol Biol320:201–213[CrossRef]
    [Google Scholar]
  31. Qian Y., Tabita F. R. 1996; A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides . J Bacteriol178:12–18
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Stock A. M., Robinson V. L., Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem69:183–215[CrossRef]
    [Google Scholar]
  34. Swem L. R., Elsen S., Bird T. H., Swem D. L., Koch H. G., Myllykallio H., Daldal F., Bauer C. E. 2001; The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus . J Mol Biol309:121–138[CrossRef]
    [Google Scholar]
  35. Yuan H. S., Finkel S. E., Feng J. A., Kaczor-Grzeskowiak M., Johnson R. C., Dickerson R. E. 1991; The molecular structure of wild-type and a mutant Fis protein: relationship between mutational changes and recombinational enhancer function or DNA binding. Proc Natl Acad Sci U S A88:9558–9562[CrossRef]
    [Google Scholar]
  36. Zeilstra-Ryalls J., Gomelsky M., Eraso J. M., Yeliseev A., O'Gara J., Kaplan S. 1998; Control of photosystem formation in Rhodobacter sphaeroides . J Bacteriol180:2801–2809
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28300-0
Loading
/content/journal/micro/10.1099/mic.0.28300-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error