1887

Abstract

FNR proteins are transcription regulators that sense changes in oxygen availability via assembly–disassembly of [4Fe–4S] clusters. The FNR protein is present in bacteria grown under aerobic and anaerobic conditions. Under aerobic conditions, FNR is isolated as an inactive monomeric apoprotein, whereas under anaerobic conditions, FNR is present as an active dimeric holoprotein containing one [4Fe–4S] cluster per subunit. It has been suggested that the active and inactive forms of FNR are interconverted , or that iron–sulphur clusters are mostly incorporated into newly synthesized FNR. Here, experiments using a thermo-inducible expression plasmid showed that a model FNR-dependent promoter is activated under anaerobic conditions by FNR that was synthesized under aerobic conditions. Immunoblots suggested that FNR was more prone to degradation under aerobic compared with anaerobic conditions, and that the ClpXP protease contributes to this degradation. Nevertheless, FNR was sufficiently long lived (half-life under aerobic conditions, ∼45 min) to allow cycling between active and inactive forms. Measuring the abundance of the FNR-activated transcript when chloramphenicol-treated cultures were switched between aerobic and anaerobic conditions showed that it increased when cultures were switched to anaerobic conditions, and decreased when aerobic conditions were restored. In contrast, measurement of the abundance of the FNR-repressed transcript under the same conditions showed that it decreased upon switching to anaerobic conditions, and then increased when aerobic conditions were restored. The abundance of the FNR- and oxygen-independent transcript was unaffected by changes in oxygen availability. Thus, the simplest explanation for the observations reported here is that the FNR protein can be switched between inactive and active forms in the absence of protein synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28253-0
2005-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/4063.html?itemId=/content/journal/micro/10.1099/mic.0.28253-0&mimeType=html&fmt=ahah

References

  1. Achebach, S., Tran, Q. H., Vlamis-Gardikas, A., Mullner, M., Holmgren, A. & Unden, G. ( 2004; ). Stimulation of Fe–S cluster insertion into apo-FNR by Escherichia coli glutaredoxins 1, 2 and 3 in vitro. FEBS Lett 565, 203–206.[CrossRef]
    [Google Scholar]
  2. Achebach, S., Selmer, T. & Unden, G. ( 2005; ). Properties and significance of apoFNR as a second form of air-inactivated [4Fe–4S] FNR of Escherichia coli. FEBS J 272, 4260–4269.[CrossRef]
    [Google Scholar]
  3. Barnard, A. M. L., Green, J. & Busby, S. J. W. ( 2004; ). Transcription regulation by tandem-bound FNR at Escherichia coli promoters. J Bacteriol 185, 5993–6004.
    [Google Scholar]
  4. Bates, D. M., Popescu, C. V., Khoroshilova, N., Vogt, K., Beinert, H., Munck, E. & Kiley, P. J. ( 2000; ). Substitution of leucine 28 with histidine in the Escherichia coli transcription factor FNR results in increased stability of the [4Fe–4S]2+ cluster to oxygen. J Biol Chem 275, 6234–6240.[CrossRef]
    [Google Scholar]
  5. Bauer, C., Elsen, S. & Bird, T. H. ( 1999; ). Mechanisms for redox control of gene expression. Annu Rev Microbiol 53, 495–523.[CrossRef]
    [Google Scholar]
  6. Becker, S., Holighaus, G., Gabrielczyk, T. & Unden, G. ( 1996; ). O2 as the regulatory signal for FNR-dependent gene expression in Escherichia coli. J Bacteriol 178, 4515–4521.
    [Google Scholar]
  7. Bell, A. & Busby, S. J. W. ( 1994; ). Location and orientation of an activating region in the Escherichia coli transcription factor, FNR. Mol Microbiol 11, 383–390.[CrossRef]
    [Google Scholar]
  8. Blake, T., Barnard, A., Busby, S. J. W. & Green, J. ( 2003; ). Transcription activation by FNR: evidence for a functional activating region 2. J Bacteriol 184, 5855–5861.
    [Google Scholar]
  9. Browning, D., Lee, D., Green, J. & Busby, S. ( 2003; ). Secrets of transcription initiation taught by the Escherichia coli FNR protein. In Signals, Switches, Regulons and Cascades: Control of Bacterial Gene Expression, pp. 127–142. Edited by D. A. Hodgson & C. M. Thomas. Cambridge: Cambridge University Press.
  10. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. ( 2004; ). Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96.[CrossRef]
    [Google Scholar]
  11. Crack, J., Green, J. & Thomson, A. J. ( 2004; ). Mechanism of oxygen sensing by the bacterial transcription factor fumarate–nitrate reduction (FNR). J Biol Chem 279, 9278–9286.[CrossRef]
    [Google Scholar]
  12. Eiglmeier, K., Honore, N., Iuchi, S., Lin, E. C. C. & Cole, S. T. ( 1989; ). Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol 33, 869–878.
    [Google Scholar]
  13. Engel, P., Trageser, M. & Unden, G. ( 1991; ). Reversible interconversion of the functional state of the gene regulator FNR from Escherichia coli in vivo by O2 and iron availability. Arch Microbiol 156, 463–470.
    [Google Scholar]
  14. Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T. & Baker, T. A. ( 2003; ). Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11, 671–683.[CrossRef]
    [Google Scholar]
  15. Gonzalez, R., Tao, H., Purvis, J. E., York, S. W., Shanmugam, K. T. & Ingram, L. O. ( 2003; ). Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19, 612–623.[CrossRef]
    [Google Scholar]
  16. Green, J. & Guest, J. R. ( 1994; ). Regulation of transcription at the ndh promoter of Escherichia coli by FNR and novel factors. Mol Microbiol 12, 433–444.[CrossRef]
    [Google Scholar]
  17. Green, J. & Marshall, F. A. ( 1999; ). Identification of a surface of FNR overlapping AR1 that is required for repression of gene expression. J Biol Chem 274, 10244–10248.[CrossRef]
    [Google Scholar]
  18. Green, J. & Paget, M. S. ( 2004; ). Bacterial redox sensors. Nat Rev Microbiol 2, 954–966.[CrossRef]
    [Google Scholar]
  19. Green, J., Trageser, M., Six, S., Unden, G. & Guest, J. R. ( 1991; ). Characterization of the FNR protein of Escherichia coli, an iron binding transcriptional regulator. Proc Biol Soc 244, 137–144.[CrossRef]
    [Google Scholar]
  20. Green, J., Bennett, B., Jordan, P., Ralph, E. T., Thomson, A. J. & Guest, J. R. ( 1996; ). Reconstitution of the [4Fe–4S] cluster in FNR and demonstration of the aerobic–anaerobic transcription switch in vitro. Biochem J 316, 887–892.
    [Google Scholar]
  21. Green, J., Baldwin, M. L. & Richardson, J. ( 1998; ). Downregulation of Escherichia coli yfiD expression by FNR occupying a site at −93·5 involves the AR1-containing face of FNR. Mol Microbiol 29, 1113–1123.[CrossRef]
    [Google Scholar]
  22. Green, J., Scott, C. & Guest, J. R. ( 2001; ). Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol 44, 1–34.
    [Google Scholar]
  23. Guest, J. R., Green, J., Irvine, A. S. & Spiro, S. ( 1996; ). The FNR modulon and FNR-regulated gene expression. In Regulation of Gene Expression in Escherichia coli, pp. 317–342. Edited by E. C. C. Lin & A. S. Lynch. Austin, TX: R. G. Landes & Co.
  24. Jack, R. L., Sargent, F., Berks, B. C., Sawers, G. & Palmer, T. ( 2001; ). Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183, 1801–1804.[CrossRef]
    [Google Scholar]
  25. Jordan, P. A., Thomson, A. J., Ralph, E. T., Guest, J. R. & Green, J. ( 1997; ). FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett 416, 349–352.[CrossRef]
    [Google Scholar]
  26. Kang, Y., Weber, K. D., Qiu, Y., Kiley, P. J. & Blattner, F. R. ( 2005; ). Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187, 1135–1160.[CrossRef]
    [Google Scholar]
  27. Khoroshilova, N., Beinert, H. & Kiley, P. J. ( 1995; ). Association of a polynuclear iron–sulfur center with a mutant FNR protein enhances DNA-binding. Proc Natl Acad Sci U S A 92, 2499–2505.[CrossRef]
    [Google Scholar]
  28. Khoroshilova, N., Popescu, C., Munck, E., Beinert, H. & Kiley, P. J. ( 1997; ). Iron–sulphur disassembly in the FNR protein of Escherichia coli by O2: [4Fe–4S] to [2Fe–2S] conversion with loss of biological activity. Proc Natl Acad Sci U S A 94, 6087–6092.[CrossRef]
    [Google Scholar]
  29. Kiley, P. J. & Beinert, H. ( 1999; ). Oxygen sensing by the global regulator FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev 22, 341–352.
    [Google Scholar]
  30. Kiley, P. J. & Beinert, H. ( 2003; ). The role of Fe–S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6, 181–185.[CrossRef]
    [Google Scholar]
  31. Lamberg, K. E. & Kiley, P. J. ( 2000; ). FNR-dependent activation of the class II dmsA and narG promoters of Escherichia coli requires FNR-activating regions 1 and 3. Mol Microbiol 38, 817–827.[CrossRef]
    [Google Scholar]
  32. Lamberg, K. E., Luther, C., Weber, K. D. & Kiley, P. J. ( 2002; ). Characterization of activating region 3 from Escherichia coli FNR. J Mol Biol 315, 275–283.[CrossRef]
    [Google Scholar]
  33. Lazazzera, B. A., Bates, D. & Kiley, P. J. ( 1993; ). The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev 7, 1993–2005.[CrossRef]
    [Google Scholar]
  34. Lazazzera, B. A., Beinert, H., Khoroshilova, N., Kennedy, M. C. & Kiley, P. J. ( 1996; ). DNA-binding and dimerization of the Fe–S containing FNR protein Escherichia coli are regulated by oxygen. J Biol Chem 271, 2762–2768.[CrossRef]
    [Google Scholar]
  35. Lennox, E. S. ( 1955; ). Transduction of linked genetic characters of host by bacteriophage P1. Virology 1, 190–206.[CrossRef]
    [Google Scholar]
  36. Li, B., Wing, H., Lee, D., Wu, H. & Busby, S. ( 1998; ). Transcription activation by Escherichia coli FNR protein: similarities to and differences from, the CRP paradigm. Nucleic Acids Res 26, 2075–2081.[CrossRef]
    [Google Scholar]
  37. Lonetto, M. A., Rhodius, V., Lamberg, K., Kiley, P., Busby, S. & Gross, C. ( 1998; ). Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase σ 70 subunit. J Mol Biol 284, 1353–1365.[CrossRef]
    [Google Scholar]
  38. Marshall, F. A., Messenger, S. L., Wyborn, N. R., Guest, J. R., Wing, H., Busby, S. J. W. & Green, J. ( 2001; ). A novel promoter architecture for microaerobic activation by the anaerobic transcription factor FNR. Mol Microbiol 39, 747–753.[CrossRef]
    [Google Scholar]
  39. Meng, W., Green, J. & Guest, J. R. ( 1997; ). FNR-dependent repression of ndh gene expression requires two upstream FNR-binding sites. Microbiology 143, 1521–1532.[CrossRef]
    [Google Scholar]
  40. Miller, J. H. ( 1972; ). Assay of β-galactosidase. In Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Moore, L. J. & Kiley, P. J. ( 2001; ). Characterization of the dimerization domain in the FNR transcription factor. J Biol Chem 276, 45744–45750.[CrossRef]
    [Google Scholar]
  42. Patschkowski, T., Bates, D. M. & Kiley, P. J. ( 2000; ). Oxidative stress. In Bacterial Stress Responses, pp. 61–78. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  43. Popescu, C. V., Bates, D. M., Beinert, H., Munck, E. & Kiley, P. J. ( 1998; ). Mössbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli. Proc Natl Acad Sci U S A 95, 13431–13435.[CrossRef]
    [Google Scholar]
  44. Salmon, K., Hung, S. P., Mekjian, K., Baldi, P., Hatfield, G. W. & Gunsalus, R. P. ( 2003; ). Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J Biol Chem 278, 29837–29855.[CrossRef]
    [Google Scholar]
  45. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  46. Sawers, G. ( 1999; ). The aerobic/anaerobic interface. Curr Opin Microbiol 2, 181–187.[CrossRef]
    [Google Scholar]
  47. Schauder, B., Blocker, H., Frank, R. & McCarthy, J. E. G. ( 1987; ). Inducible expression vectors incorporating the Escherichia coli atpE translational initiation region. Gene 52, 279–283.[CrossRef]
    [Google Scholar]
  48. Schwartz, C. J., Djaman, O., Imlay, J. A. & Kiley, P. J. ( 2000; ). The cysteine desulfurase, IscS, has a major role in in vivo Fe–S cluster formation in Escherichia coli. Proc Natl Acad Sci U S A 97, 9009–9014.[CrossRef]
    [Google Scholar]
  49. Six, S., Trageser, M., Kojro, E., Fahrenholz, F. & Unden, G. ( 1996; ). Reactivity of the N-terminal cysteine residues in active and inactive forms of FNR, an O2-responsive, Fe containing transcriptional regulator of Escherichia coli. J Inorg Biochem 62, 89–102.[CrossRef]
    [Google Scholar]
  50. Spiro, S. & Guest, J. R. ( 1987a; ). Activation of the lac operon of Escherichia coli by a mutant FNR protein. Mol Microbiol 1, 53–58.[CrossRef]
    [Google Scholar]
  51. Spiro, S. & Guest, J. R. ( 1987b; ). Regulation and over-expression of the fnr gene of Escherichia coli. J Gen Microbiol 133, 3279–3288.
    [Google Scholar]
  52. Spiro, S., Roberts, R. E. & Guest, J. R. ( 1989; ). FNR-dependent repression of the ndh gene of Escherichia coli and metal ion requirement for FNR-regulated gene expression. Mol Microbiol 3, 601–608.[CrossRef]
    [Google Scholar]
  53. Sutton, V. R., Mettert, E. L., Beinert, H. & Kiley, P. J. ( 2004a; ). Kinetic analysis of the oxidative conversion of the [4Fe–4S]2+ cluster of FNR to a [2Fe–S]2+ cluster. J Bacteriol 186, 8018–8025.[CrossRef]
    [Google Scholar]
  54. Sutton, V. R., Stubna, A., Patschowski, T., Munck, E., Beinert, H. & Kiley, P. J. ( 2004b; ). Superoxide destroys the [2Fe–2S]2+ cluster of FNR from Escherichia coli. Biochemistry 43, 791–798.[CrossRef]
    [Google Scholar]
  55. Unden, G. & Bongaerts, J. ( 1997; ). Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation. Biochim Biophys Acta 1320, 217–234.[CrossRef]
    [Google Scholar]
  56. Unden, G. & Duchene, A. ( 1987; ). On the role of cyclic AMP and the Fnr protein in Escherichia coli growing anaerobically. Arch Microbiol 147, 195–200.[CrossRef]
    [Google Scholar]
  57. Williams, S. M., Savery, N. J., Busby, S. J. W. & Wing, H. J. ( 1997; ). Transcription activation at Class I FNR-dependent promoters: identification of the activating surface of FNR and the corresponding contact site in the C-terminal domain of the RNA polymerase α subunit. Nucleic Acids Res 25, 4028–4034.[CrossRef]
    [Google Scholar]
  58. Wing, H. J., Williams, S. M. & Busby, S. J. W. ( 1995; ). Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol 177, 6704–6710.
    [Google Scholar]
  59. Wing, H. J., Green, J., Guest, J. R. & Busby, S. J. W. ( 2000; ). Role of activating region 1 of Escherichia coli FNR protein in transcription activation at Class II promoters. J Biol Chem 275, 29061–29065.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28253-0
Loading
/content/journal/micro/10.1099/mic.0.28253-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error