1887

Abstract

Biosynthesis of the red, tripyrrole antibiotic prodigiosin (Pig) by sp. ATCC 39006 (39006) is controlled by a complex regulatory network involving an -acyl homoserine lactone (-AHL) quorum-sensing system, at least two separate two-component signal transduction systems and a multitude of other regulators. In this study, a new transcriptional activator, PigT, and a physiological cue (gluconate), which are involved in an independent pathway controlling Pig biosynthesis, have been characterized. PigT, a GntR homologue, activates transcription of the biosynthetic operon in the absence of gluconate. However, addition of gluconate to the growth medium of 39006 repressed transcription of , via a PigT-dependent mechanism, resulting in a decrease in Pig production. Finally, expression of the transcript was shown to be maximal in exponential phase, preceding the onset of Pig production. This work expands our understanding of both the physiological and genetic factors that impinge on the biosynthesis of the secondary metabolite Pig in 39006.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28251-0
2005-12-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3833.html?itemId=/content/journal/micro/10.1099/mic.0.28251-0&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem256:11905–11910
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  3. Andro T., Chambost J. P., Kotoujansky A., Cattaneo J., Bertheau Y., Barras F., Van Gijsegem F., Coleno A. 1984; Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. J Bacteriol160:1199–1203
    [Google Scholar]
  4. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P., Stewart G. S., Williams P. 1992; N -(3-oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora . Biochem J288:997–1004
    [Google Scholar]
  5. Busby S., Ebright R. H. 1999; Transcription activation by catabolite activator protein (CAP). J Mol Biol293:199–213[CrossRef]
    [Google Scholar]
  6. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. 1987; The isolation and characterisation of (3R,5R)-and (3S,5R)-carbapenem-3-carboxylic acid from Serratia and Erwinia species and their putative biosynthetic role. J Chem Soc Chem Commun21:1623–1625
    [Google Scholar]
  7. Cang S., Sanada M., Johdo O., Ohta S., Nagamatsu Y., Yoshimoto A. 2000; High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnology Lett22:1761–1765[CrossRef]
    [Google Scholar]
  8. Coulthurst S. J., Kurz C. L., Salmond G. P. 2004; luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology150:1901–1910[CrossRef]
    [Google Scholar]
  9. Coulthurst S. J., Barnard A. M., Salmond G. P. 2005; Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nat Rev Microbiol3:295–306[CrossRef]
    [Google Scholar]
  10. Crow M. A. 2001; The genetic regulation of pigment and antibiotic biosynthesis in Serratia sp . 136 pp PhD thesis, University of Cambridge;
  11. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol172:6568–6572
    [Google Scholar]
  12. Fineran P. C., Slater H., Everson L., Hughes K., Salmond G. P. 2005; Biosynthesis of tripyrrole and β -lactam secondary metabolites in Serratia : integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol56:1495–1517[CrossRef]
    [Google Scholar]
  13. Fukami-Kobayashi K., Tateno Y., Nishikawa K. 2003; Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins. Mol Biol Evol20:267–277[CrossRef]
    [Google Scholar]
  14. Giri A. V., Anandkumar N., Muthukumaran G., Pennathur G. 2004; A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol4:11[CrossRef]
    [Google Scholar]
  15. Grinter N. J. 1983; A broad-host-range cloning vector transposable to various replicons. Gene21:133–143[CrossRef]
    [Google Scholar]
  16. Harris A. K., Williamson N. R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H. T., Leeper F. J., Salmond G. P. 2004; The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology150:3547–3560[CrossRef]
    [Google Scholar]
  17. Herrero M., de Lorenzo V., Timmis K. N. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol172:6557–6567
    [Google Scholar]
  18. Izu H., Adachi O., Yamada M. 1997; Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli . J Mol Biol267:778–793[CrossRef]
    [Google Scholar]
  19. Jacobs M. A., Alwood A., Thaipisuttikul I.. 12 other authors 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A100:14339–14344[CrossRef]
    [Google Scholar]
  20. Kaniga K., Delor I., Cornelis G. R. 1991; A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica . Gene109:137–141[CrossRef]
    [Google Scholar]
  21. Lodge J., Fear J., Busby S., Gunasekaran P., Kamini N. R. 1992; Broad host range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett74:271–276
    [Google Scholar]
  22. Manderville R. A. 2001; Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products. Curr Med Chem Anti-Canc Agents1:195–218[CrossRef]
    [Google Scholar]
  23. Miller J. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Peekhaus N., Conway T. 1998; Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol180:1777–1785
    [Google Scholar]
  25. Perez-Tomas R., Montaner B., Llagostera E., Soto-Cerrato V. 2003; The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol66:1447–1452[CrossRef]
    [Google Scholar]
  26. Porco A., Peekhaus N., Bausch C., Tong S., Isturiz T., Conway T. 1997; Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism. J Bacteriol179:1584–1590
    [Google Scholar]
  27. Rjazantseva I. N., Andreeva I. N., Ogorodnikova T. I. 1994; Effect of various growth conditions on pigmentation of Serratia marcescens . Microbios79:155–161
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Silverman M. P., Munoz E. F. 1973; Effect of iron and salt on prodigiosin synthesis in Serratia marcescens . J Bacteriol114:999–1006
    [Google Scholar]
  30. Slater H., Crow M., Everson L., Salmond G. P. 2003; Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol47:303–320
    [Google Scholar]
  31. Sole M., Rius N., Loren J. G. 1997; The role of pH in the ‘glucose effect’ on prodigiosin production by non-proliferating cells of Serratia marcescens . Lett App Microbiol25:81–84[CrossRef]
    [Google Scholar]
  32. Sprusansky O., Zhou L., Jordan S., White J., Westpheling J. 2003; Identification of three new genes involved in morphogenesis and antibiotic production in Streptomyces coelicolor . J Bacteriol185:6147–6157[CrossRef]
    [Google Scholar]
  33. Thomson N. R., Cox A., Bycroft B. W., Stewart G. S., Williams P., Salmond G. P. 1997; The rap and hor proteins of Erwinia , Serratia and Yersinia : a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens. Mol Microbiol26:531–544[CrossRef]
    [Google Scholar]
  34. Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P. 2000; Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol36:539–556
    [Google Scholar]
  35. Tong S., Porco A., Isturiz T., Conway T. 1996; Cloning and molecular genetic characterization of the Escherichia coli gntR , gntK , and gntU genes of GntI, the main system for gluconate metabolism. J Bacteriol178:3260–3269
    [Google Scholar]
  36. Tsunedomi R., Izu H., Kawai T., Matsushita K., Ferenci T., Yamada M. 2003; The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli . J Bacteriol185:1783–1795[CrossRef]
    [Google Scholar]
  37. Williams R. P., Gott C. L., Qadri S. M. 1971a; Induction of pigmentation in nonproliferating cells of Serratia marcescens by addition of single amino acids. J Bacteriol106:444–448
    [Google Scholar]
  38. Williams R. P., Gott C. L., Qadri S. M., Scott R. H. 1971b; Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens . J Bacteriol106:438–443
    [Google Scholar]
  39. Williamson N. R., Simonsen H. T., Ahmed R. A., Goldet G., Slater H., Woodley L., Leeper F. J., Salmond G. P. 2005; Biosynthesis of the red antibiotic, prodigiosin, in Serratia : identification of a novel 2-methyl-3- n -amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces . Mol Microbiol56:971–989[CrossRef]
    [Google Scholar]
  40. Witney F. R., Failla M. L., Weinberg E. D. 1977; Phosphate inhibition of secondary metabolism in Serratia marcescens . Appl Environ Microbiol33:1042–1046
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28251-0
Loading
/content/journal/micro/10.1099/mic.0.28251-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error