1887

Abstract

is a major pathogen implicated in dental caries. Its virulence is enhanced by its ability to produce bacteriocins, called mutacins, which inhibit the growth of other Gram-positive bacteria. The goal of this study is to use a random insertional mutagenesis approach to search for genes that are associated with mutacin I production in the virulent strain UA140. A random insertional mutagenesis library consisting of 11 000 clones was constructed and screened for a mutacin-defective phenotype. Mutacin-defective clones were isolated, and their insertion sites were determined by PCR amplification or plasmid rescue followed by sequencing. A total of twenty-five unique genes were identified. These genes can be categorized into the following functional classes: two-component sensory systems, stress responses, energy metabolism and central cellular processes. Several conserved hypothetical proteins with unknown functions were also identified. These results suggest that mutacin I production is stringently controlled by diverse and complex regulatory pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28221-0
2005-12-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3947.html?itemId=/content/journal/micro/10.1099/mic.0.28221-0&mimeType=html&fmt=ahah

References

  1. Abranches, J., Chen, Y.-Y. M. & Burne, R. A. ( 2003; ). Characterization of Streptococcus mutans strains deficient in EIIABMan of the sugar phosphotransferase system. Appl Environ Microbiol 69, 4760–4769.[CrossRef]
    [Google Scholar]
  2. Ajdić, D., McShan, W. M., McLaughlin, R. E. & 16 other authors ( 2002; ). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99, 14434–14439.[CrossRef]
    [Google Scholar]
  3. Anderson, D. M. & Schneewind, O. ( 1997; ). A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278, 1140–1143.[CrossRef]
    [Google Scholar]
  4. Carlsson, J. & Griffith, C. J. ( 1974; ). Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol 19, 1105–1109.[CrossRef]
    [Google Scholar]
  5. Carlsson, J., Kujala, U. & Edlund, M. B. ( 1985; ). Pyruvate dehydrogenase activity in Streptococcus mutans. Infect Immun 49, 674–678.
    [Google Scholar]
  6. Christensen, S. K., Mikkelsen, M., Pedersen, K. & Gerdes, K. ( 2001; ). RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A 98, 14328–14333.[CrossRef]
    [Google Scholar]
  7. Dalet, K., Cenatiempo, Y., Cossart, P. & Héchard, Y. ( 2001; ). A σ 54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147, 3263–3269.
    [Google Scholar]
  8. de Los Santos, P. E., Parret, A. H. & De Mot, R. ( 2005; ). Stress-related Pseudomonas genes involved in production of bacteriocin LlpA. FEMS Microbiol Lett 244, 243–250.[CrossRef]
    [Google Scholar]
  9. Engelke, G., Gutowski-Eckel, Z., Kiesau, P., Siegers, K., Hammelmann, M. & Entian, K. D. ( 1994; ). Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 60, 814–825.
    [Google Scholar]
  10. Federle, M. J., McIver, K. S. & Scott, J. R. ( 1999; ). A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol 181, 3649–3657.
    [Google Scholar]
  11. Galvani, C., Terry, J. & Ishiguro, E. E. ( 2001; ). Purification of the RelB and RelE proteins of Escherichia coli: RelE binds to RelB and to ribosomes. J Bacteriol 183, 2700–2703.[CrossRef]
    [Google Scholar]
  12. Gauthier, L., Mayrand, D. & Vadeboncoeur, C. ( 1984; ). Isolation of a novel protein involved in the transport of fructose by an inducible phosphoenolpyruvate fructose phosphotransferase system in Streptococcus mutans. J Bacteriol 160, 755–763.
    [Google Scholar]
  13. Giammarinaro, P., Sicard, M. & Gasc, A. M. ( 1999; ). Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae. Microbiology 145, 1859–1869.[CrossRef]
    [Google Scholar]
  14. Graham, M. R., Smoot, L. M., Migliaccio, C. A. L. & 7 other authors ( 2002; ). Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99, 13855–13860.[CrossRef]
    [Google Scholar]
  15. Gronroos, L., Saarela, M., Matto, J., Tanner-Salo, U., Vuorela, A. & Alaluusua, S. ( 1998; ). Mutacin production by Streptococcus mutans may promote transmission of bacteria from mother to child. Infect Immun 66, 2595–2600.
    [Google Scholar]
  16. Guder, A., Wiedemann, I. & Sahl, H. G. ( 2000; ). Posttranslationally modified bacteriocins – the lantibiotics. Biopolymers 55, 62–73.[CrossRef]
    [Google Scholar]
  17. Héchard, Y., Pelletier, C., Cenatiempo, Y. & Frère, J. ( 2001; ). Analysis of σ 54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147, 1575–1580.
    [Google Scholar]
  18. Henkin, T. M. ( 2000; ). Transcription termination control in bacteria. Curr Opin Microbiol 3, 149–153.[CrossRef]
    [Google Scholar]
  19. Hillman, J. D. ( 2002; ). Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie van Leeuwenhoek 82, 361–366.[CrossRef]
    [Google Scholar]
  20. Jayaraman, G. C., Penders, J. E. & Burne, R. A. ( 1997; ). Transcriptional analysis of the Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol Microbiol 25, 329–341.[CrossRef]
    [Google Scholar]
  21. Johansson, J. & Cossart, P. ( 2003; ). RNA-mediated control of virulence gene expression in bacterial pathogens. Trends Microbiol 11, 280–285.[CrossRef]
    [Google Scholar]
  22. Klein, C., Kaletta, C. & Entian, K. D. ( 1993; ). Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 59, 296–303.
    [Google Scholar]
  23. Kuhnert, W. L., Zheng, G., Faustoferri, R. C. & Quivey, R. G., Jr ( 2004; ). The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol 186, 8524–8528.[CrossRef]
    [Google Scholar]
  24. Lee, M. S., Seok, C. & Morrison, D. A. ( 1998; ). Insertion-duplication mutagenesis in Streptococcus pneumoniae: targeting fragment length is a critical parameter in use as a random insertion tool. Appl Environ Microbiol 64, 4796–4802.
    [Google Scholar]
  25. Lee, M. S., Dougherty, B. A., Madeo, A. C. & Morrison, D. A. ( 1999; ). Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl Environ Microbiol 65, 1883–1890.
    [Google Scholar]
  26. Lee, S. F., Delaney, G. D. & Elkhateeb, M. ( 2004; ). A two-component covRS regulatory system regulates expression of fructosyltransferase and a novel extracellular carbohydrate in Streptococcus mutans. Infect Immun 72, 3968–3973.[CrossRef]
    [Google Scholar]
  27. Lemos, J. A., Chen, Y. Y. & Burne, R. A. ( 2001; ). Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J Bacteriol 183, 6074–6084.[CrossRef]
    [Google Scholar]
  28. Len, A. C., Harty, D. W. & Jacques, N. A. ( 2004; ). Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150, 1353–1366.[CrossRef]
    [Google Scholar]
  29. Levin, J. C. & Wessels, M. R. ( 1998; ). Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol Microbiol 30, 209–219.[CrossRef]
    [Google Scholar]
  30. Li, Y. H., Lau, P. C., Tang, N., Svensater, G., Ellen, R. P. & Cvitkovitch, D. G. ( 2002; ). Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol 184, 6333–6342.[CrossRef]
    [Google Scholar]
  31. Loesche, W. J. ( 1986; ). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353–380.
    [Google Scholar]
  32. Lun, S. & Willson, P. J. ( 2005; ). Putative mannose-specific phosphotransferase system component IID represses expression of suilysin in serotype 2 Streptococcus suis. Vet Microbiol 105, 169–180.[CrossRef]
    [Google Scholar]
  33. Ma, W., Cui, Y., Liu, Y., Dumenyo, C. K., Mukherjee, A. & Chatterjee, A. K. ( 2001; ). Molecular characterization of global regulatory RNA species that control pathogenicity factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae. J Bacteriol 183, 1870–1880.[CrossRef]
    [Google Scholar]
  34. Merritt, J., Qi, F., Goodman, S. D., Anderson, M. H. & Shi, W. ( 2003; ). Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71, 1972–1979.[CrossRef]
    [Google Scholar]
  35. Merritt, J., Kreth, J., Shi, W. & Qi, F. ( 2005; ). LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol Microbiol 57, 960–969.[CrossRef]
    [Google Scholar]
  36. Novak, J., Caufield, P. W. & Miller, E. J. ( 1994; ). Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutans. J Bacteriol 176, 4316–4320.
    [Google Scholar]
  37. Novick, R. P., Ross, H. F., Projan, S. J., Kornblum, J., Kreiswirth, B. & Moghazeh, S. ( 1993; ). Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12, 3967–3975.
    [Google Scholar]
  38. Pedersen, K., Christensen, S. K. & Gerdes, K. ( 2002; ). Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45, 501–510.[CrossRef]
    [Google Scholar]
  39. Perry, D., Wondrack, L. M. & Kuramitsu, H. K. ( 1983; ). Genetic transformation of putative cariogenic properties in Streptococcus mutans. Infect Immun 41, 722–727.
    [Google Scholar]
  40. Podbielski, A., Spellerberg, B., Woischnik, M., Pohl, B. & Lutticken, R. ( 1996; ). Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS). Gene 177, 137–147.[CrossRef]
    [Google Scholar]
  41. Presser, K. A., Ratkowsky, D. A. & Ross, T. ( 1997; ). Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 63, 2355–2360.
    [Google Scholar]
  42. Qi, F., Chen, P. & Caufield, P. W. ( 1999; ). Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65, 3880–3887.
    [Google Scholar]
  43. Qi, F., Chen, P. & Caufield, P. W. ( 2000; ). Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66, 3221–3229.[CrossRef]
    [Google Scholar]
  44. Qi, F., Chen, P. & Caufield, P. W. ( 2001; ). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67, 15–21.[CrossRef]
    [Google Scholar]
  45. Qi, F., Merritt, J., Lux, R. & Shi, W. ( 2004; ). Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun 72, 4895–4899.[CrossRef]
    [Google Scholar]
  46. Ramnath, M., Beukes, M., Tamura, K. & Hastings, J. W. ( 2000; ). Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66, 3098–3101.[CrossRef]
    [Google Scholar]
  47. Riley, M. A. & Wertz, J. E. ( 2002; ). Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56, 117–137.[CrossRef]
    [Google Scholar]
  48. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  49. Schachtele, C. F. ( 1975; ). Glucose transport in Streptococcus mutans: preparation of cytoplasmic membranes and characteristics of phosphotransferase activity. J Dent Res 54, 330–338.
    [Google Scholar]
  50. Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. ( 2001; ). The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41, 463–476.[CrossRef]
    [Google Scholar]
  51. Schulz, A. & Schumann, W. ( 1996; ). hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178, 1088–1093.
    [Google Scholar]
  52. Shimizu, T., Yaguchi, H., Ohtani, K., Banu, S. & Hayashi, H. ( 2002; ). Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 43, 257–265.[CrossRef]
    [Google Scholar]
  53. Suzuki, T., Tagami, J. & Hanada, N. ( 2000; ). Role of F1F0-ATPase in the growth of Streptococcus mutans GS5. J Appl Microbiol 88, 555–562.[CrossRef]
    [Google Scholar]
  54. Vadeboncoeur, C. & Pelletier, M. ( 1997; ). The phosphoenolpyruvate : sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19, 187–207.[CrossRef]
    [Google Scholar]
  55. van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D. & Maguin, E. ( 2002; ). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82, 187–216.[CrossRef]
    [Google Scholar]
  56. Weaver, C. A., Chen, Y. Y. & Burne, R. A. ( 2000; ). Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius: effects on growth and urease expression. Microbiology 146, 1179–1185.
    [Google Scholar]
  57. Xavier, K. B. & Bassler, B. L. ( 2003; ). LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6, 191–197.[CrossRef]
    [Google Scholar]
  58. Yamada, T. & Carlsson, J. ( 1975; ). Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol 124, 55–61.
    [Google Scholar]
  59. Yamashita, Y., Tsukioka, Y., Tomihisa, K., Nakano, Y. & Koga, T. ( 1998; ). Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans. J Bacteriol 180, 5803–5807.
    [Google Scholar]
  60. Yoshida, A. & Kuramitsu, H. K. ( 2002; ). Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68, 6283–6291.[CrossRef]
    [Google Scholar]
  61. Zähner, D., Kaminski, K., van der Linden, M., Mascher, T., Meral, M. & Hakenbeck, R. ( 2002; ). The ciaR/ciaH regulatory network of Streptococcus pneumoniae. J Mol Microbiol Biotechnol 4, 211–216.
    [Google Scholar]
  62. Zuber, U. & Schumann, W. ( 1994; ). CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176, 1359–1363.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28221-0
Loading
/content/journal/micro/10.1099/mic.0.28221-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error