1887

Abstract

Of the three groups of haemoglobins identified in micro-organisms (single-domain globins, flavohaemoglobins and truncated globins), the last group is the least well understood. The function of the truncated haemoglobin (Ctb) encoded by Cj0465c in the microaerophilic food-borne bacterial pathogen was investigated by constructing a mutant and characterizing its phenotype. The effects of the mutation on the kinetics of terminal oxidase function in were investigated using oxyleghaemoglobin and oxymyoglobin as sensitive reporters of O consumption. The of mutant cells for O, calculated using either globin, was greater than that of wild-type cells at extracellular O concentrations up to ∼1 μM, suggesting a role for Ctb in moderating O supply for reduction by high-affinity terminal oxidases. However, cells mutated in were disadvantaged when grown under conditions of high aeration, as revealed by measurements of growth yields and rates in batch culture. Furthermore, the rate at which mutant cells consumed O in an O electrode (10–200 μM O) was approximately half the rate displayed by wild-type cells, reflecting a role for Ctb in respiration at physiologically relevant external O concentrations. However, a lack of sensitivity of the mutant to paraquat or HO indicated that increased oxidative stress under such conditions was not the cause of these phenotypes. O affinities of cells ( values of approximately 40 nM and 1 μM) were unaffected by mutation of either Ctb or the full-length globin, Cgb. Although the gene encoding Ctb was found to be upregulated by -nitrosoglutathione (GSNO) and the NO-donating compound -nitroso--acetylpenicillamine (SNAP), a mutant did not display sensitivity to a number of nitrosative stress-generating compounds. The authors conclude that Ctb is involved in moderating O flux within .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28266-0
2005-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/4079.html?itemId=/content/journal/micro/10.1099/mic.0.28266-0&mimeType=html&fmt=ahah

References

  1. Appleby, C. A. & Bergersen, F. J. ( 1980; ). Preparation and experimental use of leghaemoglobin. In Methods of Evaluating Biological Nitrogen Fixation, pp. 315–335. Edited by F. J. Bergerson. Chichester: Wiley.
  2. Baillon, M. L., van Vliet, A. H., Ketley, J. M., Constantinidou, C. & Penn, C. W. ( 1999b; ). An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 181, 4798–4804.
    [Google Scholar]
  3. Bergerson, F. J. ( 1996; ). Delivery of O2 to bacteroids in soybean nodule cells: consideration of gradients of concentration of free, dissolved O2 in and near symbiosomes and beneath intracellular spaces. Protoplasma 191, 9–20.[CrossRef]
    [Google Scholar]
  4. Bergerson, F. J. & Turner, G. L. ( 1979; ). Systems utilizing oxygenated leghemoglobin and myoglobin as sources of free dissolved oxygen at low concentrations for experiments with bacteria. Anal Biochem 96, 165–174.[CrossRef]
    [Google Scholar]
  5. Contreras, M. L., Escamilla, J. E., Del Arenal, I. P., Davila, J. R., D'Mello, R. & Poole, R. K. ( 1999; ). An unusual cytochrome o′-type cytochrome c oxidase in a Bacillus cereus cytochrome a 3 mutant has a very high affinity for oxygen. Microbiology 145, 1563–1573.[CrossRef]
    [Google Scholar]
  6. Cooper, C. E. ( 1999; ). Nitric oxide and iron proteins. Biochim Biophys Acta 1411, 290–309.[CrossRef]
    [Google Scholar]
  7. Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M. N., Scott, C., Thomson, A. J., Green, J. & Poole, R. K. ( 2002; ). NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J 21, 3235–3244.[CrossRef]
    [Google Scholar]
  8. Dickinson, J. H., Grant, K. A. & Park, S. F. ( 1995; ). Targeted and random mutagenesis of the Campylobacter coli chromosome with integrational plasmid vectors. Curr Microbiol 31, 92–96.[CrossRef]
    [Google Scholar]
  9. Dikshit, K. L., Spaulding, D., Braun, A. & Webster, D. A. ( 1989; ). Oxygen inhibition of globin gene transcription and bacterial haemoglobin synthesis in Vitreoscilla. J Gen Microbiol 135, 2601–2609.
    [Google Scholar]
  10. D'Mello, R., Hill, S. & Poole, R. K. ( 1994; ). Determination of the oxygen affinities of terminal oxidases in Azotobacter vinelandii using the deoxygenation of oxyleghaemoglobin and oxymyoglobin: cytochrome bd is a low affinity oxidase. Microbiology 140, 1395–1402.[CrossRef]
    [Google Scholar]
  11. D'Mello, R., Hill, S. & Poole, R. K. ( 1995; ). The oxygen affinity of cytochrome bo′ in Escherichia coli determined by the deoxygenation of oxyleghemoglobin and oxymyoglobin: K m values for oxygen are in the submicromolar range. J Bacteriol 177, 867–870.
    [Google Scholar]
  12. D'Mello, R., Hill, S. & Poole, R. K. ( 1996; ). The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142, 755–763.[CrossRef]
    [Google Scholar]
  13. Dowd, J. E. & Riggs, D. S. ( 1965; ). A comparison of estimates of Michaelis–Menten kinetic constants from various linear transformations. J Biol Chem 240, 863–869.
    [Google Scholar]
  14. Duncan, C., Dougall, H., Johnston, P., Green, S., Brogan, R., Leifert, C., Smith, L., Golden, M. & Benjamin, N. ( 1995; ). Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1, 546–551.[CrossRef]
    [Google Scholar]
  15. Elvers, K. T., Wu, G., Gilberthorpe, N. J., Poole, R. K. & Park, S. F. ( 2004; ). Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J Bacteriol 186, 5332–5341.[CrossRef]
    [Google Scholar]
  16. Elvers, K. T., Turner, S. M., Penn, C. W., Wainwright, L. M., Poole, R. K. & Park, S. F. ( 2005; ). NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol 57, 735–750.[CrossRef]
    [Google Scholar]
  17. Forte, P., Dykhuizen, R. S., Milne, E., McKenzie, A., Smith, C. C. & Benjamin, N. ( 1999; ). Nitric oxide synthesis in patients with infective gastroenteritis. Gut 45, 355–361.[CrossRef]
    [Google Scholar]
  18. Gaynor, E. C., Cawthraw, S., Manning, G., MacKichan, J. K., Falkow, S. & Newell, D. G. ( 2004; ). The genome-sequenced variant of Campylobacter jejuni NCTC11168 and the original clonal isolate differ markedly in colonisation, gene expression and virulence associated phenotypes. J Bacteriol 186, 503–517.[CrossRef]
    [Google Scholar]
  19. Hadden, R. D. & Gregson, N. A. ( 2001; ). Guillain–Barre syndrome and Campylobacter jejuni infection. Symp Ser Soc Appl Microbiol 145S–154S.
    [Google Scholar]
  20. Hazeleger, W. C., Wouters, J. A., Rombouts, F. M. & Abee, T. ( 1998; ). Physiological activity of Campylobacter jejuni far below the minimal growth temperature. Appl Environ Microbiol 64, 3917–3922.
    [Google Scholar]
  21. Hickey, T. E., McVeigh, A. L., Scott, D. A., Michielutti, R. E., Bixby, A., Carroll, S. A., Bourgeois, A. L. & Guerry, P. ( 2000; ). Campylobacter jejuni cytolethal distending toxin mediates the release of interleukin-8 from intestinal epithelial cells. Infect Immun 68, 6535–6541.[CrossRef]
    [Google Scholar]
  22. Hoffman, P. S., Krieg, N. R. & Smibert, R. M. ( 1979a; ). Studies of the microaerophilic nature of Campylobacter fetus subsp. jejuni. I. Physiological aspects of enhanced aerotolerance. Can J Microbiol 25, 1–7.[CrossRef]
    [Google Scholar]
  23. Hoffman, P. S., George, H. A., Krieg, N. R. & Smibert, R. M. ( 1979b; ). Studies of the microaerophilic nature of Campylobacter fetus subsp. jejuni. II. Role of exogenous superoxide anions and hydrogen peroxide. Can J Microbiol 25, 8–16.[CrossRef]
    [Google Scholar]
  24. Imlay, J. A. ( 1995; ). A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J Biol Chem 270, 19767–19777.
    [Google Scholar]
  25. Inoue, H., Nojima, N. & Okayama, H. ( 1990; ). High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.[CrossRef]
    [Google Scholar]
  26. Kalnenieks, U., Galinina, N., Bringer-Meyer, S. & Poole, R. K. ( 1998; ). Membrane d-lactate oxidase in Zymomonas mobilis: evidence for a branched respiratory chain. FEMS Microbiol Lett 168, 91–97.
    [Google Scholar]
  27. Kelly, M. J. S., Poole, R. K., Yates, M. G. & Kennedy, C. ( 1990; ). Cloning and mutagenesis of genes encoding the cytochrome-bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172, 6010–6019.
    [Google Scholar]
  28. Ketley, J. M. ( 1997; ). Pathogenesis of enteric infection by Campylobacter. Microbiology 143, 5–21.[CrossRef]
    [Google Scholar]
  29. Khosla, C. & Bailey, J. E. ( 1988; ). Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331, 633–635.[CrossRef]
    [Google Scholar]
  30. Khosla, C. & Bailey, J. E. ( 1989; ). Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli. J Mol Biol 210, 79–89.[CrossRef]
    [Google Scholar]
  31. Krieg, N. R. & Hoffman, P. S. ( 1986; ). Microaerophily and oxygen toxicity. Annu Rev Microbiol 40, 107–130.[CrossRef]
    [Google Scholar]
  32. Li, H., Duncan, C., Townend, J. & 8 other authors ( 1997; ). Nitrate-reducing bacteria on rat tongues. Appl Environ Microbiol 63, 924–930.
    [Google Scholar]
  33. Li, J., Huang, F. L. & Huang, K.-P. ( 2001; ). Glutathiolation of proteins by glutathione disulfide-S-oxide derived from S-nitrosoglutathione. J Biol Chem 276, 3098–3105.[CrossRef]
    [Google Scholar]
  34. Liu, C., He, Y. & Chang, Z. ( 2004; ). Truncated hemoglobin O of Mycobacterium tuberculosis: the oligomeric state change and the interaction with membrane components. Biochem Biophys Res Commun 316, 1163–1172.[CrossRef]
    [Google Scholar]
  35. Lundsgaard, J. S., Gronlund, J. & Degn, H. ( 1978; ). Error in oxygen measurements in open systems owing to oxygen consumption in the unstirred layer. Biotechnol Bioeng 20, 809–819.[CrossRef]
    [Google Scholar]
  36. Membrillo-Hernández, J., Ioannidis, N. & Poole, R. K. ( 1996; ). The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett 382, 141–144.[CrossRef]
    [Google Scholar]
  37. Membrillo-Hernández, J., Coopamah, M. D., Anjum, M. F., Stevanin, T. M., Kelly, A., Hughes, M. N. & Poole, R. K. ( 1999; ). The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a "nitric oxide releaser", and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem 274, 748–754.[CrossRef]
    [Google Scholar]
  38. Nikov, G., Bhat, V., Wishnok, J. F. & Tannenbaum, S. R. ( 2003; ). Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometry. Anal Biochem 320, 214–222.[CrossRef]
    [Google Scholar]
  39. Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J. & Guertin, M. ( 2002; ). Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc Natl Acad Sci U S A 99, 5902–5907.[CrossRef]
    [Google Scholar]
  40. Park, K. W., Kim, K. J., Howard, A. J., Stark, B. C. & Webster, D. A. ( 2002; ). Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J Biol Chem 277, 33334–33337.[CrossRef]
    [Google Scholar]
  41. Parkhill, J., Wren, B. W., Mungall, K. & 18 other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  42. Pathania, R., Navani, N. K., Rajamohan, G. & Dikshit, K. L. ( 2002; ). Mycobacterium tuberculosis hemoglobin HbO associates with membranes and stimulates cellular respiration of recombinant Escherichia coli. J Biol Chem 277, 15293–15302.[CrossRef]
    [Google Scholar]
  43. Pirt, S. J. ( 1975; ). Chapter 9. In Principles of Microbe and Cell Cultivation. Oxford: Blackwell Scientific Publications.
  44. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  45. Poole, R. K. ( 1976; ). The influence of growth substrate and capacity for oxidative phosphorylation on respiratory oscillations in synchronous cultures of Escherichia coli. J Gen Microbiol 99, 369–377.
    [Google Scholar]
  46. Sellars, M. J., Hall, S. J. & Kelly, D. J. ( 2002; ). Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184, 4187–4196.[CrossRef]
    [Google Scholar]
  47. Skirrow, M. B. & Blaser, M. J. ( 2000; ). Clinical aspects of Campylobacter infection. In Campylobacter, pp. 69–88. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  48. Smith, A., Hill, S. & Anthony, C. ( 1990; ). The purification, characterization and role of the d-type cytochrome oxidase of Klebsiella pneumoniae during nitrogen fixation. J Gen Microbiol 136, 171–180.[CrossRef]
    [Google Scholar]
  49. Stevanin, T. M., Poole, R. K., Demoncheaux, E. A. G. & Read, R. C. ( 2002; ). Flavohemoglobin Hmp protects Salmonella enterica serovar typhimurium from nitric oxide-related killing by human macrophages. Infect Immun 70, 4399–4405.[CrossRef]
    [Google Scholar]
  50. Unden, G., Becker, S., Bongaerts, J., Holighaus, G., Schirawski, J. & Six, S. ( 1995; ). O2 sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch Microbiol 164, 81–90.
    [Google Scholar]
  51. Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A. & Guertin, M. ( 2002; ). Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 277, 871–874.[CrossRef]
    [Google Scholar]
  52. Wu, G., Wainwright, L. M. & Poole, R. K. ( 2003; ). Microbial globins. Adv Microb Physiol 47, 255–310.
    [Google Scholar]
  53. Wu, G., Corker, H., Orii, Y. & Poole, R. K. ( 2004; ). Escherichia coli Hmp, an “oxygen-binding flavohaemoprotein”, produces superoxide anion and self-destructs. Arch Microbiol 182, 193–203.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28266-0
Loading
/content/journal/micro/10.1099/mic.0.28266-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error