- Volume 159, Issue Pt_7, 2013
Volume 159, Issue Pt_7, 2013
- Synthetic Biology
-
-
-
Building-in biosafety for synthetic biology
More LessAs the field of synthetic biology develops, real-world applications are moving from the realms of ideas and laboratory-confined research towards implementation. A pressing concern, particularly with microbial systems, is that self-replicating re-engineered cells may produce undesired consequences if they escape or overwhelm their intended environment. To address this biosafety issue, multiple mechanisms for constraining microbial replication and horizontal gene transfer have been proposed. These include the use of host–construct dependencies such as toxin–antitoxin pairs, conditional plasmid replication or the requirement for a specific metabolite to be present for cellular function. While refactoring of the existing genetic code or tailoring of orthogonal systems, e.g. xeno nucleic acids, offers future promise of more stringent ‘firewalls’ between natural and synthetic cells, here we focus on what can be achieved using existing technology. The state-of-the-art in designing for biosafety is summarized and general recommendations are made (e.g. short environmental retention times) for current synthetic biology projects to better isolate themselves against potentially negative impacts.
-
-
-
Tuning the dials of Synthetic Biology
Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design cycle based on specifications, modelling, analysis, experimental implementation, testing and validation to modify natural or design new, synthetic biology systems so that they behave in a predictable fashion. Motivated by the need for truly plug-and-play synthetic biological components, we present a comprehensive review of ways in which the various parts of a biological system can be modified systematically. In particular, we review the list of ‘dials’ that are available to the designer and discuss how they can be modelled, tuned and implemented. The dials are categorized according to whether they operate at the global, transcriptional, translational or post-translational level and the resolution that they operate at. We end this review with a discussion on the relative advantages and disadvantages of some dials over others.
-
-
-
A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile
The Clostridium difficile toxins A and B are primarily responsible for symptoms of C. difficile associated disease and are prime targets for vaccine development. We describe a plasmid-based system for the production of genetically modified toxins in a non-sporulating strain of C. difficile that lacks the toxin genes tcdA and tcdB. TcdA and TcdB mutations targeting established glucosyltransferase cytotoxicity determinants were introduced into recombinant plasmids and episomally expressed toxin mutants purified from C. difficile transformants. TcdA and TcdB mutants lacking glucosyltransferase and autoproteolytic processing activities were ~10 000-fold less toxic to cultured human IMR-90 cells than corresponding recombinant or native toxins. However, both mutants retained residual cytotoxicity that could be prevented by preincubating the antigens with specific antibodies or by formalin treatment. Such non-toxic formalin-treated mutant antigens were immunogenic and protective in a hamster model of infection. The remaining toxicity of untreated TcdA and TcdB mutant antigens was associated with cellular swelling, a phenotype consistent with pore-induced membrane leakage. TcdB substitution mutations previously shown to block vesicular pore formation and toxin translocation substantially reduced residual toxicity. We discuss the implications of these results for the development of a C. difficile toxoid vaccine.
-
-
-
Modular system for assessment of glycosyl hydrolase secretion in Geobacillus thermoglucosidasius
More LessThe facultatively anaerobic, thermophilic bacterium Geobacillus thermoglucosidasius is being developed as an industrial micro-organism for cellulosic bioethanol production. Process improvement would be gained by enhanced secretion of glycosyl hydrolases. Here we report the construction of a modular system for combining promoters, signal peptide encoding regions and glycosyl hydrolase genes to facilitate selection of the optimal combination in G. thermoglucosidasius. Initially, a minimal three-part E. coli–Geobacillus sp. shuttle vector pUCG3.8 was constructed using Gibson isothermal DNA assembly. The three PCR amplicons contained the pMB1 E. coli origin of replication and multiple cloning site (MCS) of pUC18, the Geobacillus sp. origin of replication pBST1 and the thermostable kanamycin nucleotidyltransferase gene (knt), respectively. G. thermoglucosidasius could be transformed with pUCG3.8 at an increased efficiency [2.8×105 c.f.u. (µg DNA)−1] compared to a previously reported shuttle vector, pUCG18. A modular cassette for the inducible expression and secretion of proteins in G. thermoglucosidasius, designed to allow the simple interchange of parts, was demonstrated using the endoglucanase Cel5A from Thermotoga maritima as a secretion target. Expression of cel5A was placed under the control of a cellobiose-inducible promoter (Pβglu) together with a signal peptide encoding sequence from a G. thermoglucosidasius C56-YS93 endo-β-1,4-xylanase. The interchange of parts was demonstrated by exchanging the cel5A gene with the 3′ region of a gene with homology to celA from Caldicellulosiruptor saccharolyticus and substituting Pβglu for the synthetic, constitutive promoter PUp2n38, which increased Cel5A activity five-fold. Cel5A and CelA activities were detected in culture supernatants indicating successful expression and secretion. N-terminal protein sequencing of Cel5A carrying a C-terminal FLAG epitope confirmed processing of the signal peptide sequence.
-
-
-
A single phosphatase can convert a robust step response into a graded, tunable or adaptive response
More LessMany biological signalling pathways have evolved to produce responses to environmental signals that are robust to fluctuations in protein copy number and noise. Whilst beneficial for biology, this robustness can be problematic for synthetic biologists wishing to re-engineer and subsequently tune the response of a given system. Here we show that the well-characterized EnvZ/OmpR two-component signalling system from Escherichia coli possesses one such robust step response. However, the synthetic addition of just a single component into the system, an extra independently controllable phosphatase, can change this behaviour to become graded and tunable, and even show adaptation. Our approach introduces a new design principle which can be implemented simply in engineering and redesigning fast signal transduction pathways for synthetic biology.
-
- SGM Prize Lecture
-
-
-
Cyclic di-GMP signalling and the regulation of bacterial virulence
More LessSignal transduction pathways involving the second messenger cyclic di-GMP [bis-(3′-5′)-cyclic di-guanosine monophosphate] occur widely in bacteria where they act to link perception of environmental or intracellular cues and signals to specific alterations in cellular function. Such alterations can contribute to bacterial lifestyle transitions including biofilm formation and virulence. The cellular levels of the nucleotide are controlled through the opposing activities of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). The GGDEF domain of DGCs catalyses the synthesis of cyclic di-GMP from GTP, whereas EAL or HD-GYP domains in different classes of PDE catalyse cyclic di-GMP degradation to pGpG and GMP. We are now beginning to understand how alterations in cyclic di-GMP exert a regulatory action through binding to diverse receptors or effectors that include a small ‘adaptor’ protein domain called PilZ, transcription factors and riboswitches. The regulatory action of enzymically active cyclic di-GMP signalling proteins is, however, not restricted to an influence on the level of nucleotide. Here, I will discuss our recent findings that highlight the role that protein–protein interactions involving these signalling proteins have in regulating functions that contribute to bacterial virulence.
-
-
- Comment
-
- Cell and Molecular Biology of Microbes
-
-
-
Role of oxyR KP, a novel LysR-family transcriptional regulator, in antimicrobial resistance and virulence in Klebsiella pneumoniae
Klebsiella pneumoniae is a Gram-negative bacillus that causes serious infections in immunocompromised human hosts and exhibits significant multidrug resistance. In this study, we identified a novel lysR-family regulator (designated oxyR KP) in the genome of K. pneumoniae NTUH-K2044 whose functions have remained enigmatic so far. Functional characterization of the putative lysR regulator oxyR KP with respect to cellular physiology and antimicrobial susceptibility was performed by generating an isogenic mutant, ΔoxyR KP in a hypervirulent clinical isolate of K. pneumoniae. The K. pneumoniae oxyR KP mutant was sensitive to hyperosmotic and bile conditions. Disruption of oxyR KP increased the susceptibility of K. pneumoniae to oxidative (0.78947 mM hydrogen peroxide) and nitrosative (30 mM acidified nitrite) stress by ~1.4-fold and ~10-fold, respectively. Loss of the Klebsiella regulator led to a decrease in the minimum inhibitory concentrations for chloramphenicol (10-fold), erythromycin (6-fold), nalidixic acid (>50-fold) and trimethoprim (10-fold), which could be restored following complementation. The relative change in expression of resistance–nodulation–cell division super family (RND) efflux gene acrB was decreased by approximately fivefold in the oxyR KP mutant as evidenced by qRT-PCR. In a Caenorhabditis elegans model, the oxyR KP mutant exhibited significantly (P<0.01) lower virulence. Overall, results detailed in this report reflect the pleiotropic role of the oxyR KP signalling system and diversity of the resistance determinants in hypervirulent K1 serotype K. pneumoniae NTUH-K2044.
-
-
-
-
Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa σvreI ECF factor and its target genes
More LessThe cell-surface signalling (CSS) system represents an important regulatory mechanism by which Gram-negative bacteria respond to the environment. Gene regulation by CSS systems is particularly present and important in the opportunistic human pathogen Pseudomonas aeruginosa. In this bacterium, these mechanisms regulate mainly the uptake of iron, but also virulence functions. The latter is the case for the P. aeruginosa PUMA3 CSS system formed by the putative VreA receptor, the σVreI extracytoplasmic function sigma factor and the VreR anti-sigma factor. A role for this system in P. aeruginosa virulence has been demonstrated previously. However, the conditions under which this system is expressed and activated have not been elucidated so far. In this work, we have identified and characterized the global regulatory cascade activating the expression of the PUMA3 system. We show that the PhoB transcriptional regulator, part of the PhoB-PhoR two-component signalling system, can sense a limitation of inorganic phosphate to turn on the expression of the vreA, vreI and vreR genes, which constitute an operon. Upon expression of these genes in this condition, σVreI factor mediates transcription of most, but not all, of the previously identified σVreI-regulated genes. Indeed, we found new σVreI-targeted genes and we show that σVreI-regulon genes are all located immediately downstream to the vreAIR gene cluster.
-
-
-
Occurrence of mutations impairing sigma factor B (SigB) function upon inactivation of Listeria monocytogenes genes encoding surface proteins
Bacteria of the genus Listeria contain the largest family of LPXTG surface proteins covalently anchored to the peptidoglycan. The extent to which these proteins may function or be regulated cooperatively is at present unknown. Because of their unique cellular location, we reasoned that distinct LPXTG proteins could act as elements contributing to cell wall homeostasis or influencing the stability of other surface proteins bound to peptidoglycan. To test this hypothesis, we used proteomics to analyse mutants of the intracellular pathogen Listeria monocytogenes lacking distinct LPXTG proteins implicated in pathogen–host interactions, such as InlA, InlF, InlG, InlH, InlJ, LapB and Vip. Changes in the cell wall proteome were found in inlG and vip mutants, which exhibited reduced levels of the LPXTG proteins InlH, Lmo0610, Lmo0880 and Lmo2085, all regulated by the stress-related sigma factor SigB. The ultimate basis of this alteration was uncovered by genome sequencing, which revealed that these inlG and vip mutants carried loss-of-function mutations in the rsbS, rsbU and rsbV genes encoding regulatory proteins that control SigB activity. Attempts to recapitulate this negative selection of SigB in a large series of new inlG or vip mutants constructed for this purpose were, however, unsuccessful. These results indicate that inadvertent secondary mutations affecting SigB functionality can randomly arise in L. monocytogenes when using common genetic procedures or during subculturing. Testing of SigB activity could be therefore valuable when manipulating genetically L. monocytogenes prior to any subsequent phenotypic analysis. This test may be even more justified when generating deletions affecting cell envelope components.
-
-
-
Comparative proteomic analysis reveals new components of the PhoP regulon and highlights a role for PhoP in the regulation of genes encoding the F1F0 ATP synthase in Edwardsiella tarda
More LessEdwardsiella tarda is an important cause of haemorrhagic septicaemia in fish and also of gastro- and extra-intestinal infections in humans. We have recently demonstrated that the PhoP-PhoQ two-component regulatory system plays important roles in both virulence and stress tolerance in E. tarda. In this study, the proteomes of the WT and phoP mutant strains were compared to define components of the PhoP regulon in E. tarda EIB202. Overall, 18 proteins whose expression levels exhibited a twofold or greater change were identified; 13 of these proteins were found to require the presence of PhoP for full expression, while five were expressed at a higher level in the phoP mutant background. Identified proteins represented diverse functional categories, including energy production, amino acid metabolism and oxidative stress defence. Quantitative real-time PCR analysis of the mRNA levels for the identified proteins confirmed the proteomics data. Interestingly, the β subunit of the F1F0 ATP synthase, playing an important role in growth and virulence of E. tarda, was listed as one of the proteins whose expression was greatly dependent on PhoP. The F1F0 ATP synthase was encoded in a gene cluster (atpIBEFHAGDC) and the nine genes were transcribed as an operon. PhoP positively regulated the transcription of the nine ATP synthase genes and exerted this effect through direct binding to the promoter of atpI. Overall, the results provide new insights into the PhoP regulon and unravel a novel role for PhoP in the regulation of the F1F0 ATP synthase.
-
-
-
YgfX (CptA) is a multimeric membrane protein that interacts with the succinate dehydrogenase assembly factor SdhE (YgfY)
More LessSerratia sp. strain ATCC 39006 produces the red-pigmented antibiotic prodigiosin. Prodigiosin biosynthesis is regulated by a complex hierarchy that includes the uncharacterized protein YgfX (DUF1434). The ygfX gene is co-transcribed with sdhE, an FAD assembly factor essential for the flavinylation and activation of the SdhA subunit of succinate dehydrogenase (SDH), a central enzyme in the tricarboxylic acid cycle and electron transport chain. The sdhEygfX operon is highly conserved within the Enterobacteriaceae, suggesting that SdhE and YgfX function together. We performed an extensive mutagenesis to gain molecular insights into the uncharacterized protein YgfX, and have investigated the relationship between YgfX and SdhE. YgfX localized to the membrane, interacted with itself, forming dimers or larger multimers, and interacted with SdhE. The transmembrane helices of YgfX were critical for protein function and the formation of YgfX multimers. Site-directed mutagenesis of residues conserved in DUF1434 proteins revealed a periplasmic tryptophan and a cytoplasmic aspartate that were crucial for YgfX activity. Both of these amino acids were required for the formation of YgfX multimers and interactions with SdhE but not membrane localization. Multiple cell division proteins were identified as putative interaction partners of YgfX and overexpression of YgfX had effects on cell morphology. These findings represent an important step in understanding the function of DUF1434 proteins. In contrast to a recent report, we found no evidence that YgfX and SdhE form a toxin–antitoxin system. In summary, YgfX functions as a multimeric membrane-bound protein that interacts with SdhE, an important FAD assembly factor that controls SDH activity.
-
-
-
RaoN, a small RNA encoded within Salmonella pathogenicity island-11, confers resistance to macrophage-induced stress
More LessBacterial small non-coding RNAs act as important regulators that control numerous cellular processes. Here we identified RaoN, a novel small RNA encoded in the cspH-envE intergenic region on Salmonella pathogenicity island-11 (SPI-11). RaoN contributes to survival under conditions of acid and oxidative stress combined with nutrient limitation, which partially mimic the intramacrophage environment. Indeed, inactivation of raoN reduces the intramacrophage replication of Salmonella enterica serovar Typhimurium. Genome-wide transcriptome analysis revealed that the lactate dehydrogenase gene ldhA is upregulated in the raoN knockout mutant. Notably, both inactivation and overexpression of ldhA in the WT strain render Salmonella more sensitive to oxidative stress, particularly when combined with nutrient limitation. However, ldhA is not the sole determinant of RaoN function in facilitating intramacrophage survival of Salmonella. Together, our data suggest that balanced regulation of ldhA expression by RaoN is necessary for survival under in vitro stress conditions and contributes to the intramacrophage growth of Salmonella.
-
-
-
Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis
Bordetella pertussis, the causative agent of whooping cough, is highly adapted to cause human infection. The production of virulence factors, such as adhesins and toxins, is just part of an array of mechanisms by which B. pertussis causes infection. The stringent response is a global bacterial response to nutritional limitation that is mediated by the accumulation of cellular ppGpp and pppGpp [termed together as (p)ppGpp]. Here, we demonstrate that production of (p)ppGpp was controlled by RelA and SpoT proteins in B. pertussis, and that mutation-induced loss of both proteins together caused deficiencies in (p)ppGpp production. The (p)ppGpp-deficient mutants also exhibited defects in growth regulation, decreases in viability under nutritionally limited conditions, increases in susceptibility to oxidative stress and defects in biofilm formation. Analysis of the secreted proteins and the respective transcripts showed that lack of (p)ppGpp led to decreased expression of fim3 and bsp22, which encode a fimbrial subunit and the self-polymerizing type III secretion system tip protein, respectively. Moreover, electron microscopic analysis also indicated that (p)ppGpp regulated the formation of filamentous structures. Most virulence genes – including fim3 and bsp22 – were expressed in the Bvg+ phase during which the BvgAS two-component system was activated. Although fim3 and bsp22 were downregulated in a (p)ppGpp-deficient mutant, normal expression of fhaB, cyaA and ptxA persisted. Lack of coherence between virulence gene expression and (p)ppGpp production indicated that (p)ppGpp did not modulate the Bvg phase. Taken together, our data indicate that (p)ppGpp may govern an as-yet-unrecognized system that influences B. pertussis pathogenicity.
-
-
-
Characterization of two resuscitation promoting factors of Listeria monocytogenes
More LessIn actinobacteria, resuscitation promoting factor (Rpf) proteins have been described as having the ability to increase the viable count of dormant cultures and stimulate growth of vegetative cells through lag phase reduction. Recently, it was suggested that proteins Lmo0186 and Lmo2522 of Listeria monocytogenes are equivalent to Rpf proteins based on their genomic context and conserved domain architecture. It was proposed that they have evolved through non-orthologous displacement of the Rpf domain found in actinobacteria. Here we present biological and biochemical data supporting a function of Lmo0186 and Lmo2522 as Rpfs. These proteins are collectively dispensable for growth but a lmo0186 lmo2522 double mutant exhibits an extended lag phase when diluted in minimal medium. This phenotype could be partially complemented by medium supplementation with fM to nM concentrations of purified hexahistidine-tagged versions of Lmo0186 and Lmo2522, showing that these proteins can stimulate growth. Gel filtration analysis and cross-linking experiments suggest that the recombinant proteins in solution are elongated monomers. Both proteins display muralytic activity against crude cell wall preparations and are active against an artificial lysozyme substrate. Our study thus supports the hypothesis that Lmo0186 and Lmo2522 are functional equivalents of actinobacteria Rpf proteins and represents the first characterization of two Rpf homologues from firmicutes.
-
-
-
FimK regulation on the expression of type 1 fimbriae in Klebsiella pneumoniae CG43S3
More LessKlebsiella pneumoniae CG43, a heavy encapsulated liver abscess isolate, mainly expresses type 3 fimbriae. Type 1 fimbriae expression was only apparent in CG43S3ΔmrkA (the type 3 fimbriae-deficient strain). The expression of type 1 fimbriae in CG43S3ΔmrkA was reduced by deleting the fimK gene, but was unaffected by removing the 3′ end of fimK encoding the C-terminal EIL domain (EIL fimK ). Quantitative RT-PCR and promoter activity analysis showed that the putative DNA-binding region at the N terminus, but not the C-terminal EIL domain, of FimK positively affects transcription of the type 1 fimbrial major subunit, fimA. An electrophoretic mobility shift assay demonstrated that the recombinant FimK could specifically bind to fimS, which is located upstream of fimA and contains a vegetative promoter for the fim operon, also reflecting possible transcriptional regulation. EIL fimK was shown to encode a functional phosphodiesterase (PDE) via enhancing motility in Escherichia coli JM109 and in vitro using PDE activity assays. Moreover, EIL fimK exhibited higher PDE activity than FimK, implying that the N-terminal DNA-binding domain may negatively affect the PDE activity of FimK. FimA expression was detected in CG43S3 expressing EIL fimK or AIL fimK , suggesting that FimA expression is not directly influenced by the c-di-GMP level. In summary, FimK influences type 1 fimbriation by binding to fimS at the N-terminal domain, and thereafter, the altered protein structure may activate C-terminal PDE activity to reduce the intracellular c-di-GMP level.
-
- Genes and Genomes
-
-
-
Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor
More LessWe have demonstrated the portability of theophylline-dependent synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. The riboswitches mediate dose-dependent, up to 260-fold activation of reporter gene expression. Riboswitch regulation is a simple method requiring a sequence of only ~85 nt to be inserted between a transcriptional start site and the start codon; no additional auxiliary factors are necessary. The promoters galP2, ermEp1 and SF14 worked well in concert with the riboswitches. They allowed theophylline-dependent expression of not only the heterologous β-glucuronidase reporter gene but also dagA, an endogenous agarase gene. The successful combination of all tested promoters with the riboswitches underlines the orthogonality of riboswitch regulation. We anticipate that any additional natural or synthetic promoters can be combined with the riboswitch.
-
-
-
-
Phyletic distribution and conservation of the bacterial transcription termination factor Rho
More LessTranscription termination factor Rho is a ring-shaped, ATP-dependent molecular motor that targets hundreds of transcription units in Escherichia coli. Interest in Rho was renewed recently on the realization that this essential factor is involved in multiple interactions and cellular processes that protect the E. coli genome and regulate its expression on a global scale. Yet it is currently unknown if (and how) Rho-dependent mechanisms are conserved throughout the bacterial kingdom. Here, we mined public databases to assess the distribution, expression and structural conservation of Rho across bacterial phyla. We found that rho is present in more than 90 % of sequenced bacterial genomes, although Cyanobacteria, Mollicutes and a fraction of Firmicutes are totally devoid of rho. Genomes lacking rho tend to be small and AT-rich and often belong to species with parasitic/symbiotic lifestyles (such as Mollicutes). By contrast, large GC-rich genomes, such as those of Actinobacteria, often contain rho duplicates and/or encode Rho proteins that bear insertion domains of unknown function(s). Notwithstanding, most Rho sequences across taxa contain canonical RNA-binding and ATP hydrolysis signature motifs, a feature suggestive of largely conserved mechanism(s) of action. Mutations that impair binding of bicyclomycin are present in ~5 % of rho sequences, implying that species from diverse ecosystems have developed resistance against this natural antibiotic. Altogether, these findings assert that Rho function is widespread among bacteria and suggest that it plays a particularly relevant role in the expression of complex genomes and/or bacterial adaptation to changing environments.
-
- Microbial Pathogenicity
-
-
-
Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci
More LessEthanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)