1887

Abstract

The facultatively anaerobic, thermophilic bacterium is being developed as an industrial micro-organism for cellulosic bioethanol production. Process improvement would be gained by enhanced secretion of glycosyl hydrolases. Here we report the construction of a modular system for combining promoters, signal peptide encoding regions and glycosyl hydrolase genes to facilitate selection of the optimal combination in . Initially, a minimal three-part sp. shuttle vector pUCG3.8 was constructed using Gibson isothermal DNA assembly. The three PCR amplicons contained the pMB1 origin of replication and multiple cloning site (MCS) of pUC18, the sp. origin of replication pBST1 and the thermostable kanamycin nucleotidyltransferase gene (), respectively. could be transformed with pUCG3.8 at an increased efficiency [2.8×10 c.f.u. (µg DNA)] compared to a previously reported shuttle vector, pUCG18. A modular cassette for the inducible expression and secretion of proteins in designed to allow the simple interchange of parts, was demonstrated using the endoglucanase Cel5A from as a secretion target. Expression of was placed under the control of a cellobiose-inducible promoter (P) together with a signal peptide encoding sequence from a C56-YS93 endo-β-1,4-xylanase. The interchange of parts was demonstrated by exchanging the gene with the 3′ region of a gene with homology to from and substituting P for the synthetic, constitutive promoter P, which increased Cel5A activity five-fold. Cel5A and CelA activities were detected in culture supernatants indicating successful expression and secretion. N-terminal protein sequencing of Cel5A carrying a C-terminal FLAG epitope confirmed processing of the signal peptide sequence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066332-0
2013-07-01
2020-07-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1267.html?itemId=/content/journal/micro/10.1099/mic.0.066332-0&mimeType=html&fmt=ahah

References

  1. Assareh R., Shahbani Zahiri H., Akbari Noghabi K., Aminzadeh S., Bakhshi Khaniki G..( 2012;). Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws. Bioresour Technol120:99–105 [CrossRef][PubMed]
    [Google Scholar]
  2. Bartosiak-Jentys J., Eley K., Leak D. J..( 2012;). Application of pheB as a reporter gene for Geobacillus spp., enabling qualitative colony screening and quantitative analysis of promoter strength. Appl Environ Microbiol78:5945–5947 [CrossRef][PubMed]
    [Google Scholar]
  3. Brautaset T., Lale R., Valla S..( 2009;). Positively regulated bacterial expression systems. Microb Biotechnol2:15–30 [CrossRef][PubMed]
    [Google Scholar]
  4. Brockmeier U., Caspers M., Freudl R., Jockwer A., Noll T., Eggert T..( 2006;). Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol362:393–402 [CrossRef][PubMed]
    [Google Scholar]
  5. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L..( 2003;). The MerR family of transcriptional regulators. FEMS Microbiol Rev27:145–163 [CrossRef][PubMed]
    [Google Scholar]
  6. Chhabra S. R., Shockley K. R., Ward D. E., Kelly R. M..( 2002;). Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol68:545–554 [CrossRef][PubMed]
    [Google Scholar]
  7. Cripps R. E., Eley K., Leak D. J., Rudd B., Taylor M., Todd M., Boakes S., Martin S., Atkinson T..( 2009;). Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng11:398–408 [CrossRef][PubMed]
    [Google Scholar]
  8. Deutscher J..( 2008;). The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol11:87–93 [CrossRef][PubMed]
    [Google Scholar]
  9. Deutscher J., Francke C., Postma P. W..( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031 [CrossRef][PubMed]
    [Google Scholar]
  10. Gibson D. G., Benders G. A., Andrews-Pfannkoch C., Denisova E. A., Baden-Tillson H., Zaveri J., Stockwell T. B., Brownley A., Thomas D. W. et al.( 2008;). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science319:1215–1220 [CrossRef][PubMed]
    [Google Scholar]
  11. Gibson D. G., Young L., Chuang R.-Y., Venter J. C., Hutchison C. A. III, Smith H. O..( 2009;). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods6:343–345 [CrossRef][PubMed]
    [Google Scholar]
  12. Lai X. K., Ingram L. O..( 1993;). Cloning and sequencing of a cellobiose phosphotransferase system operon from Bacillus stearothermophilus XL-65-6 and functional expression in Escherichia coli.. J Bacteriol175:6441–6450[PubMed]
    [Google Scholar]
  13. Liao H., McKenzie T., Hageman R..( 1986;). Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci U S A83:576–580 [CrossRef][PubMed]
    [Google Scholar]
  14. Marciniak B. C., Pabijaniak M., de Jong A., Duhring R., Seidel G., Hillen W., Kuipers O. P..( 2012;). High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis. BMC Genomics13:401 [CrossRef][PubMed]
    [Google Scholar]
  15. McKenzie T., Hoshino T., Tanaka T., Sueoka N..( 1986;). The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid15:93–103 [CrossRef][PubMed]
    [Google Scholar]
  16. Natale P., Brüser T., Driessen A. J. M..( 2008;). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochim Biophys Acta1778:1735–1756 [CrossRef][PubMed]
    [Google Scholar]
  17. Pereira J. H., Chen Z., McAndrew R. P., Sapra R., Chhabra S. R., Sale K. L., Simmons B. A., Adams P. D..( 2010;). Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. J Struct Biol172:372–379 [CrossRef][PubMed]
    [Google Scholar]
  18. Sargent F., Berks B. C., Palmer T..( 2006;). Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbiol Lett254:198–207 [CrossRef][PubMed]
    [Google Scholar]
  19. Stoll R., Goebel W..( 2010;). The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth. Microbiology156:1069–1083 [CrossRef][PubMed]
    [Google Scholar]
  20. Taylor M. P., Esteban C. D., Leak D. J..( 2008;). Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid60:45–52 [CrossRef][PubMed]
    [Google Scholar]
  21. Tjalsma H., Bolhuis A., Jongbloed J. D. H., Bron S., van Dijl J. M..( 2000;). Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev64:515–547 [CrossRef][PubMed]
    [Google Scholar]
  22. Wood I. P., Elliston A., Ryden P., Bancroft I., Roberts I. N., Waldron K. W..( 2012;). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy44:117–121 [CrossRef]
    [Google Scholar]
  23. Yanisch-Perron C., Vieira J., Messing J..( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119 [CrossRef][PubMed]
    [Google Scholar]
  24. Zambare V. P., Bhalla A., Muthukumarappan K., Sani R. K., Christopher L. P..( 2011;). Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles15:611–618 [CrossRef][PubMed]
    [Google Scholar]
  25. Zeng L., Burne R. A..( 2009;). Transcriptional regulation of the cellobiose operon of Streptococcus mutans. J Bacteriol191:2153–2162 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066332-0
Loading
/content/journal/micro/10.1099/mic.0.066332-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error