1887

Abstract

In actinobacteria, resuscitation promoting factor (Rpf) proteins have been described as having the ability to increase the viable count of dormant cultures and stimulate growth of vegetative cells through lag phase reduction. Recently, it was suggested that proteins Lmo0186 and Lmo2522 of are equivalent to Rpf proteins based on their genomic context and conserved domain architecture. It was proposed that they have evolved through non-orthologous displacement of the Rpf domain found in actinobacteria. Here we present biological and biochemical data supporting a function of Lmo0186 and Lmo2522 as Rpfs. These proteins are collectively dispensable for growth but a double mutant exhibits an extended lag phase when diluted in minimal medium. This phenotype could be partially complemented by medium supplementation with fM to nM concentrations of purified hexahistidine-tagged versions of Lmo0186 and Lmo2522, showing that these proteins can stimulate growth. Gel filtration analysis and cross-linking experiments suggest that the recombinant proteins in solution are elongated monomers. Both proteins display muralytic activity against crude cell wall preparations and are active against an artificial lysozyme substrate. Our study thus supports the hypothesis that Lmo0186 and Lmo2522 are functional equivalents of actinobacteria Rpf proteins and represents the first characterization of two Rpf homologues from firmicutes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067850-0
2013-07-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1390.html?itemId=/content/journal/micro/10.1099/mic.0.067850-0&mimeType=html&fmt=ahah

References

  1. Aubry C., Goulard C., Nahori M.-A., Cayet N., Decalf J., Sachse M., Boneca I. G., Cossart P., Dussurget O..( 2011;). OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. J Infect Dis204:731–740 [CrossRef][PubMed]
    [Google Scholar]
  2. Bateman A., Holden M. T. G., Yeats C..( 2005;). The G5 domain: a potential N-acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics21:1301–1303 [CrossRef][PubMed]
    [Google Scholar]
  3. Besnard V., Federighi M., Cappelier J. M..( 2000a;). Development of a direct viable count procedure for the investigation of VBNC state in Listeria monocytogenes.. Lett Appl Microbiol31:77–81 [CrossRef][PubMed]
    [Google Scholar]
  4. Besnard V., Federighi M., Cappelier J. M..( 2000b;). Evidence of viable but non-culturable state in Listeria monocytogenes by direct viable count and CTC-DAPI double staining. Food Microbiol17:697–704 [CrossRef]
    [Google Scholar]
  5. Besnard V., Federighi M., Declerq E., Jugiau F., Cappelier J. M..( 2002;). Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet Res33:359–370 [CrossRef][PubMed]
    [Google Scholar]
  6. Biketov S., Potapov V., Ganina E., Downing K., Kana B. D., Kaprelyants A..( 2007;). The role of resuscitation promoting factors in pathogenesis and reactivation of Mycobacterium tuberculosis during intra-peritoneal infection in mice. BMC Infect Dis7:146 [CrossRef][PubMed]
    [Google Scholar]
  7. Boneca I. G., Dussurget O., Cabanes D., Nahori M. A., Sousa S., Lecuit M., Psylinakis E., Bouriotis V., Hugot J. P. et al.( 2007;). A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A104:997–1002 [CrossRef][PubMed]
    [Google Scholar]
  8. Buist G., Steen A., Kok J., Kuipers O. P..( 2008;). LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol68:838–847 [CrossRef][PubMed]
    [Google Scholar]
  9. Cabré F., Canela E. I., Canela M. A..( 1989;). Accuracy and precision in the determination of Stokes radii and molecular masses of proteins by gel filtration chromatography. J Chromatogr A472:347–356 [CrossRef][PubMed]
    [Google Scholar]
  10. Calderon C., Abuin E., Lissi E., Montecinos R..( 2011;). Effect of human serum albumin on the kinetics of 4-methylumbelliferyl-β-d-N-N′-N″ Triacetylchitotrioside hydrolysis catalyzed by hen egg white lysozyme. Protein J30:367–373 [CrossRef][PubMed]
    [Google Scholar]
  11. Carroll S. A., Hain T., Technow U., Darji A., Pashalidis P., Joseph S. W., Chakraborty T..( 2003;). Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J Bacteriol185:6801–6808 [CrossRef][PubMed]
    [Google Scholar]
  12. Dower W. J., Miller J. F., Ragsdale C. W..( 1988;). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res16:6127–6145 [CrossRef][PubMed]
    [Google Scholar]
  13. Downing K. J., Mischenko V. V., Shleeva M. O., Young D. I., Young M., Kaprelyants A. S., Apt A. S., Mizrahi V..( 2005;). Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect Immun73:3038–3043 [CrossRef][PubMed]
    [Google Scholar]
  14. Dworkin J., Shah I. M..( 2010;). Exit from dormancy in microbial organisms. Nat Rev Microbiol8:890–896 [CrossRef][PubMed]
    [Google Scholar]
  15. Erickson H. P..( 2009;). Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online11:32–51 [CrossRef][PubMed]
    [Google Scholar]
  16. Gupta R. K., Srivastava B. S., Srivastava R..( 2010;). Comparative expression analysis of rpf-like genes of Mycobacterium tuberculosis H37Rv under different physiological stress and growth conditions. Microbiology156:2714–2722 [CrossRef][PubMed]
    [Google Scholar]
  17. Jekow P., Behlke J., Tichelaar W., Lurz R., Regalla M., Hinrichs W., Tavares P..( 1999;). Effect of the ionic environment on the molecular structure of bacteriophage SPP1 portal protein. Eur J Biochem264:724–735 [CrossRef][PubMed]
    [Google Scholar]
  18. Kana B. D., Gordhan B. G., Downing K. J., Sung N., Vostroktunova G., Machowski E. E., Tsenova L., Young M., Kaprelyants A. et al.( 2008;). The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol67:672–684 [CrossRef][PubMed]
    [Google Scholar]
  19. Koltunov V., Greenblatt C. L., Goncharenko A. V., Demina G. R., Klein B. Y., Young M., Kaprelyants A. S..( 2010;). Structural changes and cellular localization of resuscitation-promoting factor in environmental isolates of Micrococcus luteus.. Microb Ecol59:296–310 [CrossRef][PubMed]
    [Google Scholar]
  20. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C. et al.( 2011;). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res39:Database issue)D225–D229 [CrossRef][PubMed]
    [Google Scholar]
  21. Mukamolova G. V., Kaprelyants A. S., Young D. I., Young M., Kell D. B..( 1998a;). A bacterial cytokine. Proc Natl Acad Sci U S A95:8916–8921 [CrossRef][PubMed]
    [Google Scholar]
  22. Mukamolova G. V., Yanopolskaya N. D., Kell D. B., Kaprelyants A. S..( 1998b;). On resuscitation from the dormant state of Micrococcus luteus. Antonie van Leeuwenhoek73:237–243 [CrossRef][PubMed]
    [Google Scholar]
  23. Mukamolova G. V., Turapov O. A., Kazarian K., Telkov M., Kaprelyants A. S., Kell D. B., Young M..( 2002a;). The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol Microbiol46:611–621 [CrossRef][PubMed]
    [Google Scholar]
  24. Mukamolova G. V., Turapov O. A., Young D. I., Kaprelyants A. S., Kell D. B., Young M..( 2002b;). A family of autocrine growth factors in Mycobacterium tuberculosis. Mol Microbiol46:623–635 [CrossRef][PubMed]
    [Google Scholar]
  25. Mukamolova G. V., Murzin A. G., Salina E. G., Demina G. R., Kell D. B., Kaprelyants A. S., Young M..( 2006;). Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol59:84–98 [CrossRef][PubMed]
    [Google Scholar]
  26. Nikitushkin V. D., Demina G. R., Shleeva M. O., Kaprelyants A. S..( 2013;). Peptidoglycan fragments stimulate resuscitation of “non-culturable” mycobacteria. Antonie van Leeuwenhoek103:37–46 [CrossRef][PubMed]
    [Google Scholar]
  27. Oliver J. D..( 2005;). The viable but nonculturable state in bacteria. J Microbiol43:Spec No)93–100[PubMed]
    [Google Scholar]
  28. Oliver J. D..( 2010;). Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev34:415–425[PubMed]
    [Google Scholar]
  29. Park S. F., Stewart G. S..( 1990;). High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene94129–132 [CrossRef][PubMed]
    [Google Scholar]
  30. Petersen T. N., Brunak S., von Heijne G., Nielsen H..( 2011;). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods8:785–786 [CrossRef][PubMed]
    [Google Scholar]
  31. Pfeffer J. M., Strating H., Weadge J. T., Clarke A. J..( 2006;). Peptidoglycan O acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state. J Bacteriol188:902–908 [CrossRef][PubMed]
    [Google Scholar]
  32. Premaratne R. J., Lin W. J., Johnson E. A..( 1991;). Development of an improved chemically defined minimal medium for Listeria monocytogenes. Appl Environ Microbiol57:3046–3048[PubMed]
    [Google Scholar]
  33. Ravagnani A., Finan C. L., Young M..( 2005;). A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement. BMC Genomics6:39 [CrossRef][PubMed]
    [Google Scholar]
  34. Roszak D. B., Grimes D. J., Colwell R. R..( 1984;). Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol30:334–338 [CrossRef][PubMed]
    [Google Scholar]
  35. Ruggiero A., Tizzano B., Pedone E., Pedone C., Wilmanns M., Berisio R..( 2009;). Crystal structure of the resuscitation-promoting factor (DeltaDUF)RpfB from M. tuberculosis. J Mol Biol385:153–162 [CrossRef][PubMed]
    [Google Scholar]
  36. São-José C., Parreira R., Vieira G., Santos M. A..( 2000;). The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. J Bacteriol182:5823–5831 [CrossRef][PubMed]
    [Google Scholar]
  37. São-José C., Baptista C., Santos M. A..( 2004;). Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol186:8337–8346 [CrossRef][PubMed]
    [Google Scholar]
  38. São-José C., Lhuillier S., Lurz R., Melki R., Lepault J., Santos M. A., Tavares P..( 2006;). The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J Biol Chem281:11464–11470 [CrossRef][PubMed]
    [Google Scholar]
  39. Scheurwater E., Reid C. W., Clarke A. J..( 2008;). Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol40:586–591 [CrossRef][PubMed]
    [Google Scholar]
  40. Signoretto C., del Mar, Lleò M. M., Tafi M. C., Canepari P..( 2000;). Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl Environ Microbiol66:1953–1959 [CrossRef][PubMed]
    [Google Scholar]
  41. Smith K., Youngman P..( 1992;). Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie74:705–711 [CrossRef][PubMed]
    [Google Scholar]
  42. Tabor S., Richardson C. C..( 1985;). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A82:1074–1078 [CrossRef][PubMed]
    [Google Scholar]
  43. Telkov M. V., Demina G. R., Voloshin S. A., Salina E. G., Dudik T. V., Stekhanova T. N., Mukamolova G. V., Kazaryan K. A., Goncharenko A. V. et al.( 2006;). Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases. Biochemistry (Mosc)71:414–422 [CrossRef][PubMed]
    [Google Scholar]
  44. Trost M., Wehmhöner D., Kärst U., Dieterich G., Wehland J., Jänsch L..( 2005;). Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics5:1544–1557 [CrossRef][PubMed]
    [Google Scholar]
  45. Tufariello J. M., Jacobs W. R. Jr, Chan J..( 2004;). Individual Mycobacterium tuberculosis resuscitation-promoting factor homologues are dispensable for growth in vitro and in vivo. Infect Immun72:515–526 [CrossRef][PubMed]
    [Google Scholar]
  46. van Straaten K. E., Dijkstra B. W., Vollmer W., Thunnissen A. M..( 2005;). Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol352:1068–1080 [CrossRef][PubMed]
    [Google Scholar]
  47. Wiedmann M., Arvik T. J., Hurley R. J., Boor K. J..( 1998;). General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes.. J Bacteriol180:3650–3656[PubMed]
    [Google Scholar]
  48. Xu H. S., Roberts N., Singleton F. L., Attwell R. W., Grimes D. J., Colwell R. R..( 1982;). Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol8:313–323 [CrossRef]
    [Google Scholar]
  49. Yang Y., Hamaguchi K..( 1980;). Hydrolysis of 4-methylumbelliferyl N-acetyl-chitotetraoside catalyzed by hen lysozyme. J Biochem88:829–836[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067850-0
Loading
/content/journal/micro/10.1099/mic.0.067850-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error