1887

Abstract

is a Gram-negative bacillus that causes serious infections in immunocompromised human hosts and exhibits significant multidrug resistance. In this study, we identified a novel -family regulator (designated ) in the genome of NTUH-K2044 whose functions have remained enigmatic so far. Functional characterization of the putative regulator with respect to cellular physiology and antimicrobial susceptibility was performed by generating an isogenic mutant, Δ in a hypervirulent clinical isolate of . The mutant was sensitive to hyperosmotic and bile conditions. Disruption of increased the susceptibility of to oxidative (0.78947 mM hydrogen peroxide) and nitrosative (30 mM acidified nitrite) stress by ~1.4-fold and ~10-fold, respectively. Loss of the regulator led to a decrease in the minimum inhibitory concentrations for chloramphenicol (10-fold), erythromycin (6-fold), nalidixic acid (>50-fold) and trimethoprim (10-fold), which could be restored following complementation. The relative change in expression of resistance–nodulation–cell division super family (RND) efflux gene was decreased by approximately fivefold in the mutant as evidenced by qRT-PCR. In a model, the mutant exhibited significantly (<0.01) lower virulence. Overall, results detailed in this report reflect the pleiotropic role of the signalling system and diversity of the resistance determinants in hypervirulent K1 serotype NTUH-K2044.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065052-0
2013-07-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1301.html?itemId=/content/journal/micro/10.1099/mic.0.065052-0&mimeType=html&fmt=ahah

References

  1. Bourret R. B., Borkovich K. A., Simon M. I..( 1991;). Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem60:401–441 [CrossRef][PubMed]
    [Google Scholar]
  2. Brown C., Seidler R. J..( 1973;). Potential pathogens in the environment: Klebsiella pneumoniae, a taxonomic and ecological enigma. Appl Microbiol25:900–904[PubMed]
    [Google Scholar]
  3. Bush K., Courvalin P., Dantas G., Davies J., Eisenstein B., Huovinen P., Jacoby G. A., Kishony R., Kreiswirth B. N. et al.( 2011;). Tackling antibiotic resistance. Nat Rev Microbiol9:894–896 [CrossRef][PubMed]
    [Google Scholar]
  4. Chuang Y. P., Fang C. T., Lai S. Y., Chang S. C., Wang J. T..( 2006;). Genetic determinants of capsular serotype K1 of Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis193:645–654 [CrossRef][PubMed]
    [Google Scholar]
  5. .Performance standards for antimicrobial susceptibility testing
  6. Coudeyras S., Nakusi L., Charbonnel N., Forestier C..( 2008;). A tripartite efflux pump involved in gastrointestinal colonization by Klebsiella pneumoniae confers a tolerance response to inorganic acid. Infect Immun76:4633–4641 [CrossRef][PubMed]
    [Google Scholar]
  7. De Champs C., Sauvant M. P., Chanal C., Sirot D., Gazuy N., Malhuret R., Baguet J. C., Sirot J..( 1989;). Prospective survey of colonization and infection caused by expanded-spectrum-beta-lactamase-producing members of the family Enterobacteriaceae in an intensive care unit. J Clin Microbiol27:2887–2890[PubMed]
    [Google Scholar]
  8. Deretic V., Song J., Pagán-Ramos E..( 1997;). Loss of oxyR in Mycobacterium tuberculosis. Trends Microbiol5:367–372 [CrossRef][PubMed]
    [Google Scholar]
  9. Di Martino P., Cafferini N., Joly B., Darfeuille-Michaud A..( 2003;). Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res Microbiol154:9–16 [CrossRef][PubMed]
    [Google Scholar]
  10. Fang C. T., Chuang Y. P., Shun C. T., Chang S. C., Wang J. T..( 2004;). A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med199:697–705 [CrossRef][PubMed]
    [Google Scholar]
  11. Fuursted K., Schøler L., Hansen F., Dam K., Bojer M. S., Hammerum A. M., Dagnæs-Hansen F., Olsen A., Jasemian Y., Struve C..( 2012;). Virulence of a Klebsiella pneumoniae strain carrying the New Delhi metallo-beta-lactamase-1 (NDM-1). Microbes Infect14:155–158 [CrossRef][PubMed]
    [Google Scholar]
  12. Gunn J. S..( 2000;). Mechanisms of bacterial resistance and response to bile. Microbes Infect2:907–913 [CrossRef][PubMed]
    [Google Scholar]
  13. Hassett D. J., Alsabbagh E., Parvatiyar K., Howell M. L., Wilmott R. W., Ochsner U. A..( 2000;). A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J Bacteriol182:4557–4563 [CrossRef][PubMed]
    [Google Scholar]
  14. Hennequin C., Forestier C..( 2009;). oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect Immun77:5449–5457 [CrossRef][PubMed]
    [Google Scholar]
  15. Highsmith A. K., Jarvis W. R..( 1985;). Klebsiella pneumoniae: selected virulence factors that contribute to pathogenicity. Infect Control6:75–77[PubMed]
    [Google Scholar]
  16. Hirsch E. B., Tam V. H..( 2010;). Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother65:1119–1125 [CrossRef][PubMed]
    [Google Scholar]
  17. Hoch J. A..( 2000;). Two-component and phosphorelay signal transduction. Curr Opin Microbiol3:165–170 [CrossRef][PubMed]
    [Google Scholar]
  18. Imlay J. A..( 2003;). Pathways of oxidative damage. Annu Rev Microbiol57:395–418 [CrossRef][PubMed]
    [Google Scholar]
  19. Imlay J. A..( 2008;). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem77:755–776 [CrossRef][PubMed]
    [Google Scholar]
  20. Jung K., Fried L., Behr S., Heermann R..( 2012;). Histidine kinases and response regulators in networks. Curr Opin Microbiol15:118–124 [CrossRef][PubMed]
    [Google Scholar]
  21. Knapp G. S., Hu J. C..( 2010;). Specificity of the E. coli LysR-type transcriptional regulators. PLoS ONE5:e15189 [CrossRef][PubMed]
    [Google Scholar]
  22. Kohanski M. A., Dwyer D. J., Hayete B., Lawrence C. A., Collins J. J..( 2007;). A common mechanism of cellular death induced by bactericidal antibiotics. Cell130:797–810 [CrossRef][PubMed]
    [Google Scholar]
  23. Kohanski M. A., Dwyer D. J., Wierzbowski J., Cottarel G., Collins J. J..( 2008;). Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell135:679–690 [CrossRef][PubMed]
    [Google Scholar]
  24. Krachler A. M., Woolery A. R., Orth K..( 2011;). Manipulation of kinase signaling by bacterial pathogens. J Cell Biol195:1083–1092 [CrossRef][PubMed]
    [Google Scholar]
  25. Krell T., Lacal J., Busch A., Silva-Jiménez H., Guazzaroni M. E., Ramos J. L..( 2010;). Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol64:539–559 [CrossRef][PubMed]
    [Google Scholar]
  26. Lin M. H., Hsu T. L., Lin S. Y., Pan Y. J., Jan J. T., Wang J. T., Khoo K. H., Wu S. H..( 2009;). Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol Cell Proteomics8:2613–2623 [CrossRef][PubMed]
    [Google Scholar]
  27. Macfarlane S..( 2008;). Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol42:Suppl 3 Pt 1S142–S143 [CrossRef][PubMed]
    [Google Scholar]
  28. Maddocks S. E., Oyston P. C..( 2008;). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology154:3609–3623 [CrossRef][PubMed]
    [Google Scholar]
  29. Milstone A. M., Passaretti C. L., Perl T. M..( 2008;). Chlorhexidine: expanding the armamentarium for infection control and prevention. Clin Infect Dis46:274–281 [CrossRef][PubMed]
    [Google Scholar]
  30. Nordmann P., Cuzon G., Naas T..( 2009;). The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis9:228–236 [CrossRef][PubMed]
    [Google Scholar]
  31. Ogawa W., Li D. W., Yu P., Begum A., Mizushima T., Kuroda T., Tsuchiya T..( 2005;). Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol Pharm Bull28:1505–1508 [CrossRef][PubMed]
    [Google Scholar]
  32. Ogawa W., Koterasawa M., Kuroda T., Tsuchiya T..( 2006;). KmrA multidrug efflux pump from Klebsiella pneumoniae. Biol Pharm Bull29:550–553 [CrossRef][PubMed]
    [Google Scholar]
  33. Padilla E., Llobet E., Doménech-Sánchez A., Martínez-Martínez L., Bengoechea J. A., Albertí S..( 2010;). Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother54:177–183 [CrossRef][PubMed]
    [Google Scholar]
  34. Pinsky B. A., Baron E. J., Janda J. M., Banaei N..( 2009;). Bartholin’s abscess caused by hypermucoviscous Klebsiella pneumoniae. J Med Microbiol58:671–673 [CrossRef][PubMed]
    [Google Scholar]
  35. Podschun R., Ullmann U..( 1998;). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev11:589–603[PubMed]
    [Google Scholar]
  36. Pomposiello P. J., Demple B..( 2001;). Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol19:109–114 [CrossRef][PubMed]
    [Google Scholar]
  37. Rapp R. P., Urban C..( 2012;). Klebsiella pneumoniae carbapenemases in Enterobacteriaceae: history, evolution, and microbiology concerns. Pharmacotherapy32:399–407 [CrossRef][PubMed]
    [Google Scholar]
  38. Rosner J. L., Storz G..( 1994;). Effects of peroxides on susceptibilities of Escherichia coli and Mycobacterium smegmatis to isoniazid. Antimicrob Agents Chemother38:1829–1833 [CrossRef][PubMed]
    [Google Scholar]
  39. Selden R., Lee S., Wang W. L., Bennett J. V., Eickhoff T. C..( 1971;). Nosocomial klebsiella infections: intestinal colonization as a reservoir. Ann Intern Med74:657–664 [CrossRef][PubMed]
    [Google Scholar]
  40. Shemesh M., Kolter R., Losick R..( 2010;). The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC. J Bacteriol192:6352–6356 [CrossRef][PubMed]
    [Google Scholar]
  41. Srinivasan V. B., Rajamohan G., Gebreyes W. A..( 2009;). Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob Agents Chemother53:5312–5316 [CrossRef][PubMed]
    [Google Scholar]
  42. Srinivasan V. B., Vaidyanathan V., Mondal A., Rajamohan G..( 2012a;). Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044. PLoS ONE7:e33777 [CrossRef][PubMed]
    [Google Scholar]
  43. Srinivasan V. B., Venkataramaiah M., Mondal A., Vaidyanathan V., Govil T., Rajamohan G..( 2012b;). Functional characterization of a novel outer membrane porin KpnO, regulated by PhoBR two-component system in Klebsiella pneumoniae NTUH-K2044. PLoS ONE7:e41505 [CrossRef][PubMed]
    [Google Scholar]
  44. Stevanin T. M., Ioannidis N., Mills C. E., Kim S. O., Hughes M. N., Poole R. K..( 2000;). Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo’ or bd, from nitric oxide. J Biol Chem275:35868–35875 [CrossRef][PubMed]
    [Google Scholar]
  45. Storz G., Imlay J. A..( 1999;). Oxidative stress. Curr Opin Microbiol2:188–194 [CrossRef][PubMed]
    [Google Scholar]
  46. Vinckx T., Wei Q., Matthijs S., Cornelis P..( 2010;). The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Microbiology156:678–686 [CrossRef][PubMed]
    [Google Scholar]
  47. Wu K. M., Li L. H., Yan J. J., Tsao N., Liao T. L., Tsai H. C., Fung C. P., Chen H. J., Liu Y. M. et al.( 2009;). Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol191:4492–4501 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhang J. P., Zhu W., Tian S. F., Chu Y. Z., Chen B. Y..( 2010;). Molecular characteristics and resistant mechanisms of imipenem-resistant Acinetobacter baumannii isolates in Shenyang, China. J Microbiol48:689–694 [CrossRef][PubMed]
    [Google Scholar]
  49. Zheng M., Aslund F., Storz G..( 1998;). Activation of the OxyR transcription factor by reversible disulfide bond formation. Science279:1718–1721 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065052-0
Loading
/content/journal/micro/10.1099/mic.0.065052-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error