1887

Abstract

We have demonstrated the portability of theophylline-dependent synthetic riboswitches for the conditional control of gene expression in . The riboswitches mediate dose-dependent, up to 260-fold activation of reporter gene expression. Riboswitch regulation is a simple method requiring a sequence of only ~85 nt to be inserted between a transcriptional start site and the start codon; no additional auxiliary factors are necessary. The promoters , p1 and SF14 worked well in concert with the riboswitches. They allowed theophylline-dependent expression of not only the heterologous β-glucuronidase reporter gene but also , an endogenous agarase gene. The successful combination of all tested promoters with the riboswitches underlines the orthogonality of riboswitch regulation. We anticipate that any additional natural or synthetic promoters can be combined with the riboswitch.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067322-0
2013-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1416.html?itemId=/content/journal/micro/10.1099/mic.0.067322-0&mimeType=html&fmt=ahah

References

  1. Anné J., Maldonado B., Van Impe J., Van Mellaert L., Bernaerts K.. ( 2012;). Recombinant protein production and streptomycetes. . J Biotechnol 158:, 159–167. [CrossRef][PubMed]
    [Google Scholar]
  2. Band L., Henner D. J.. ( 1984;). Bacillus subtilis requires a “stringent” Shine-Dalgarno region for gene expression. . DNA 3:, 17–21. [CrossRef][PubMed]
    [Google Scholar]
  3. Baylis H. A., Bibb M. J.. ( 1987;). The nucleotide sequence of a 16S rRNA gene from Streptomyces coelicolor A3(2). . Nucleic Acids Res 15:, 7176. [CrossRef][PubMed]
    [Google Scholar]
  4. Bibb M. J., Janssen G. R., Ward J. M.. ( 1985;). Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus.. Gene 38:, 215–226. [CrossRef][PubMed]
    [Google Scholar]
  5. Brawner M. E., Auerbach J. I., Fornwald J. A., Rosenberg M., Taylor D. P.. ( 1985;). Characterization of Streptomyces promoter sequences using the Escherichia coli galactokinase gene.. Gene 40:, 191–201. [CrossRef][PubMed]
    [Google Scholar]
  6. Breaker R. R.. ( 2012;). Riboswitches and the RNA world. . Cold Spring Harb Perspect Biol 4:, a003566. [CrossRef][PubMed]
    [Google Scholar]
  7. de Smit M. H., van Duin J.. ( 1994;). Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. . J Mol Biol 235:, 173–184. [CrossRef][PubMed]
    [Google Scholar]
  8. Demain A. L., Sanchez S.. ( 2009;). Microbial drug discovery: 80 years of progress. . J Antibiot (Tokyo) 62:, 5–16. [CrossRef][PubMed]
    [Google Scholar]
  9. Desai S. K., Gallivan J. P.. ( 2004;). Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. . J Am Chem Soc 126:, 13247–13254. [CrossRef][PubMed]
    [Google Scholar]
  10. Fischer, J. (1996). Entwicklung eines regulierbaren Expressionssystems zur effizienten Synthese rekombinanter Proteine in Streptomyces lividans. Doctoral Dissertation, University of Stuttgart, Stuttgart, Germany.
  11. Flett F., Mersinias V., Smith C. P.. ( 1997;). High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. . FEMS Microbiol Lett 155:, 223–229. [CrossRef][PubMed]
    [Google Scholar]
  12. Fornwald J. A., Schmidt F. J., Adams C. W., Rosenberg M., Brawner M. E.. ( 1987;). Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. . Proc Natl Acad Sci U S A 84:, 2130–2134. [CrossRef][PubMed]
    [Google Scholar]
  13. Harvey I., Garneau P., Pelletier J.. ( 2002;). Inhibition of translation by RNA-small molecule interactions. . RNA 8:, 452–463. [CrossRef][PubMed]
    [Google Scholar]
  14. Herai S., Hashimoto Y., Higashibata H., Maseda H., Ikeda H., Omura S., Kobayashi M.. ( 2004;). Hyper-inducible expression system for streptomycetes. . Proc Natl Acad Sci U S A 101:, 14031–14035. [CrossRef][PubMed]
    [Google Scholar]
  15. Hodgson D. A., Chater K. F.. ( 1981;). A chromosomal locus controlling extracellular agarase. . J Gen Microbiol 124:, 339–348.
    [Google Scholar]
  16. Holmes D. J., Caso J. L., Thompson C. J.. ( 1993;). Autogenous transcriptional activation of a thiostrepton-induced gene in Streptomyces lividans.. EMBO J 12:, 3183–3191.[PubMed]
    [Google Scholar]
  17. Jenison R. D., Gill S. C., Pardi A., Polisky B.. ( 1994;). High-resolution molecular discrimination by RNA. . Science 263:, 1425–1429. [CrossRef][PubMed]
    [Google Scholar]
  18. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics. Norwich, UK:: John Innes Foundation;.
    [Google Scholar]
  19. Labes G., Bibb M., Wohlleben W.. ( 1997;). Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn1696 as reporter. . Microbiology 143:, 1503–1512. [CrossRef][PubMed]
    [Google Scholar]
  20. Lussier F. X., Denis F., Shareck F.. ( 2010;). Adaptation of the highly productive T7 expression system to Streptomyces lividans.. Appl Environ Microbiol 76:, 967–970. [CrossRef][PubMed]
    [Google Scholar]
  21. Lynch S. A., Gallivan J. P.. ( 2009;). A flow cytometry-based screen for synthetic riboswitches. . Nucleic Acids Res 37:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  22. Lynch S. A., Desai S. K., Sajja H. K., Gallivan J. P.. ( 2007;). A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. . Chem Biol 14:, 173–184. [CrossRef][PubMed]
    [Google Scholar]
  23. McLaughlin J. R., Murray C. L., Rabinowitz J. C.. ( 1981;). Unique features in the ribosome binding site sequence of the gram-positive Staphylococcus aureus beta-lactamase gene. . J Biol Chem 256:, 11283–11291.[PubMed]
    [Google Scholar]
  24. Murakami T., Holt T. G., Thompson C. J.. ( 1989;). Thiostrepton-induced gene expression in Streptomyces lividans.. J Bacteriol 171:, 1459–1466.[PubMed]
    [Google Scholar]
  25. Myronovskyi M., Welle E., Fedorenko V., Luzhetskyy A.. ( 2011;). Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. . Appl Environ Microbiol 77:, 5370–5383. [CrossRef][PubMed]
    [Google Scholar]
  26. Reynoso C. M., Miller M. A., Bina J. E., Gallivan J. P., Weiss D. S.. ( 2012;). Riboswitches for intracellular study of genes involved in Francisella pathogenesis. . MBio 3:, e00253-12. [CrossRef][PubMed]
    [Google Scholar]
  27. Rodríguez-García A., Combes P., Pérez-Redondo R., Smith M. C. A., Smith M. C. M.. ( 2005;). Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces.. Nucleic Acids Res 33:, e87. [CrossRef][PubMed]
    [Google Scholar]
  28. Seeliger J. C., Topp S., Sogi K. M., Previti M. L., Gallivan J. P., Bertozzi C. R.. ( 2012;). A riboswitch-based inducible gene expression system for mycobacteria. . PLoS ONE 7:, e29266. [CrossRef][PubMed]
    [Google Scholar]
  29. Strohl W. R.. ( 1992;). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. . Nucleic Acids Res 20:, 961–974. [CrossRef][PubMed]
    [Google Scholar]
  30. Suess B., Fink B., Berens C., Stentz R., Hillen W.. ( 2004;). A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. . Nucleic Acids Res 32:, 1610–1614. [CrossRef][PubMed]
    [Google Scholar]
  31. Suess B., Weigand J. E.. ( 2008;). Engineered riboswitches - Overview, Problems and Trends. RNA Biol. 5. . [CrossRef][PubMed]
    [Google Scholar]
  32. Takano E., White J., Thompson C. J., Bibb M. J.. ( 1995;). Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. . Gene 166:, 133–137. [CrossRef][PubMed]
    [Google Scholar]
  33. Topp, S. (2009). Biological engineering with Chemical-Sensing macromolecular switches: I. Discovery and applications of small-molecule dependent synthetic riboswitches II. A genetic toolbox for creating reversible Ca 2+ -sensitive biomaterials. PhD thesis, Emory University, GA, USA.
  34. Topp S., Gallivan J. P.. ( 2008;). Random walks to synthetic riboswitches a high-throughput selection based on cell motility. . ChemBioChem 9:, 210–213. [CrossRef][PubMed]
    [Google Scholar]
  35. Topp S., Reynoso C. M., Seeliger J. C., Goldlust I. S., Desai S. K., Murat D., Shen A., Puri A. W., Komeili A. et al. ( 2010;). Synthetic riboswitches that induce gene expression in diverse bacterial species. . Appl Environ Microbiol 76:, 7881–7884. [CrossRef][PubMed]
    [Google Scholar]
  36. Vockenhuber M. P., Suess B.. ( 2012;). Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region. . Microbiology 158:, 424–435. [CrossRef][PubMed]
    [Google Scholar]
  37. Wittmann A., Suess B.. ( 2012;). Engineered riboswitches: expanding researchers’ toolbox with synthetic RNA regulators. . FEBS Lett 586:, 2076–2083. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067322-0
Loading
/content/journal/micro/10.1099/mic.0.067322-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error